\(Description\)

给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环。

\(n\leq17\)。

\(Solution\)

问题也等价于,用不同的边集构造DAG,有多少种合法方案。我们考虑怎么构造DAG使得方案不重不漏。

我明知道一个DAG的拓扑序是唯一确定的。所以我们按照拓扑序每次转移一个点集。

\(f[s][s']\)表示 构造 已经选择的点集为\(s\),当前最后一层点集为\(s'\)的DAG 的方案数。

转移时枚举不在\(s\)中的子集\(k\),\(k\)合法首先要满足\(s'\)与\(k\)中所有点有边。

然后设\(s\oplus s'\)与k中某点的连边有\(cnt1_i\)条,\(s'\)与\(k\)中该点的连边有\(cnt2_i\)条,则该点的合法方案数为\(2^{cnt1_i}\times(2^{cnt2_i}-1)\)。

\(f[s|k][k]=\sum f[s][s']\times\prod 2^{cnt1_i}\times(2^{cnt2_i}-1)\)。

复杂度\(O(4^n\times m)\)。

考虑减掉第二维。直接枚举当前点集\(i\),然后枚举补集的子集\(j\)。只要还是按层加入节点就能保证是DAG。

\(i,j\)之间可以不存在边,设\(i\)连向\(j\)的边有\(cnt\)条,则\(f[i|j]+=f[i]\times 2^j\)?

当然没这么简单。容易发现\(i|j\)可以由很多组\(i,j\)构成。所以加个容斥,容斥系数是\((-1)^{sz[j]+1}\)。

不是很懂这个容斥系数。。是加1个点的然后减去还可以由两个点的...?

复杂度\(O(3^nm)\),可以优化到\(O(3^n+2^nm)\)(不管了)(虽然最大数据要跑10s+...)。

https://blog.csdn.net/ylsoi/article/details/80427659

https://www.cnblogs.com/KaNNeXFF/p/5942983.html

#include <cstdio>
#include <cctype>
#include <algorithm>
#define In(x,s) (s>>x&1)
#define gc() getchar()
#define mod 1000000007
const int N=20,S=(1<<17)+3; int n,m,pw[N*N],mp[N][N],num[N][S],f[S]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline int Calc(int s)
{
int res=0;
for(; s; s>>=1) res+=s&1;
return res;
} int main()
{
freopen("E.in","r",stdin);
freopen("E.out","w",stdout); n=read(),m=read();
pw[0]=1;
for(int i=1; i<=m; ++i) pw[i]=pw[i-1]<<1, pw[i]>=mod&&(pw[i]-=mod);
for(int i=1; i<=m; ++i) mp[read()-1][read()-1]=1;
int all=(1<<n)-1;
for(int s=0; s<=all; ++s)
for(int v=0; v<n; ++v)
if(In(v,s))
for(int x=0; x<n; ++x) num[x][s]+=mp[x][v];
f[0]=1;
for(int i=0; i<=all; ++i)
{
if(!f[i]) continue;
int rest=all^i;
for(int j=rest; j; j=(j-1)&rest)
{
int sz=Calc(j), cnt=0;
for(int k=0; k<n; ++k)
if(In(k,i)) cnt+=num[k][j];
if(sz&1) f[i|j]+=1ll*f[i]*pw[cnt]%mod, f[i|j]>=mod&&(f[i|j]-=mod);
else f[i|j]-=1ll*f[i]*pw[cnt]%mod-mod, f[i|j]>=mod&&(f[i|j]-=mod);
}
}
printf("%d\n",f[all]); return 0;
}

NOIp模拟赛 巨神兵(状压DP 容斥)的更多相关文章

  1. 2018.10.17 NOIP模拟 管道(状压dp)

    传送门 状压dp好题. 怎么今天道道题都有点东西啊 对于今天题目神仙出题人先膜为上策:%%%%DzYoAk_UoI%%%% 设f[i][j]f[i][j]f[i][j]表示选取点的状态集合为iii,当 ...

  2. 2018.09.08 NOIP模拟 division(状压dp)

    这么sb的题考场居然写挂了2233. 假设n=∏iaiki" role="presentation" style="position: relative;&qu ...

  3. 2018.08.29 NOIP模拟 movie(状压dp/随机化贪心)

    [描述] 小石头喜欢看电影,选择有 N 部电影可供选择,每一部电影会在一天的不同时段播 放.他希望连续看 L 分钟的电影.因为电影院是他家开的,所以他可以在一部电影播放过程中任何时间进入或退出,当然他 ...

  4. BZOJ 3812 主旋律 (状压DP+容斥) + NOIP模拟赛 巨神兵(obelisk)(状压DP)

    这道题跟另一道题很像,先看看那道题吧 巨神兵(obelisk) 题面 欧贝利斯克的巨神兵很喜欢有向图,有一天他找到了一张nnn个点mmm条边的有向图.欧贝利斯克认为一个没有环的有向图是优美的,请问这张 ...

  5. 4.26 省选模拟赛 T3 状压dp 差分求答案

    LINK:T3 比较好的题目 考试的时候被毒瘤的T2给搞的心态爆炸 这道题连正解的思路都没有想到. 一看到题求删除点的最少个 可以使得不连通. 瞬间想到最小割 发现对于10分直接跑最小割即可. 不过想 ...

  6. codeforces 342D Xenia and Dominoes(状压dp+容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...

  7. bzoj2669 [cqoi2012]局部极小值 状压DP+容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...

  8. 一本通 1783 矩阵填数 状压dp 容斥 计数

    LINK:矩阵填数 刚看到题目的时候感觉是无从下手的. 可以看到有n<=2的点 两个矩形. 如果只有一个矩形 矩形外的方案数容易计算考虑 矩形内的 必须要存在x这个最大值 且所有值<=x. ...

  9. P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)

    题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...

随机推荐

  1. python---django中url访问方法

    只是了解,不推荐使用,毕竟干扰太多,任意冲突,也没有解耦,应该使用路由分发 在url匹配中支持正则匹配,例如: from django.conf.urls import include, urlfro ...

  2. 【转】在Mac OS X 10.8中配置Apache + PHP + MySQL

    CHENYILONG Blog 在Mac OS X 10.8中配置Apache + PHP + MySQL 在Mac OS X 10.8中配置Apache+PHP+MySQL的内容包括: 配置Apac ...

  3. 20165320 2017-2018-2《Java程序设计》课程总结

    20165320 2017-2017-2<Java程序设计>课程总结 一.每周作业链接汇总 1.我期待的师生关系 20165320 我期望的师生关系 2.学习基础和C语言基础调查 2016 ...

  4. input文本框禁止修改文本——disabled和readonly属性的作用及区别

    1.input文本框禁止修改文本 disabled属性:<input type="text" name="name" value="xxx&qu ...

  5. 【逆向知识】裸函数(Naked函数)

    1 说明 指定裸函数编写的函数,编译器生成不带任何多余代码. 利用此功能,可以使用内联汇编程序代码编写自己的 prolog/epilog 代码序列. 裸函数对于编写虚拟设备驱动程序特别有用. 2 练习 ...

  6. casper Dom的操作

    phantom.casperTest = true; phantom.outputEncoding="utf-8"; var casper = require('casper'). ...

  7. MVC Form验证 登陆和退出Cookies的设定和消除

    红色部分为重点 1.webconfig配置  <system.web>节点下添加 <authentication mode="Forms"> <for ...

  8. 总结WCF开发中遇到的几个问题

    最近的项目,需要用到WCF,在以前的工作中,经常是将WCF托管在IIS中,主要有几下几个原因:      第一:部署非常方便,和部署一个站点没什么区别:      第二:不受防火墙的影响,因为一般服务 ...

  9. JVM 垃圾回收算法及案例分析

    一. 在说垃圾回收算法之前,先谈谈JVM怎样确定哪些对象是“垃圾”. 1.引用计数器算法: 引用计数器算法是给每个对象设置一个计数器,当有地方引用这个对象的时候,计数器+1,当引用失效的时候,计数器- ...

  10. day25作业

    1.阻塞  2.就绪  3.阻塞  4.Runnable  5.join()  6.synchronized  7.notify()和notifyAll()   8.Object 1.A   2.D  ...