2010 NEERC Western subregional

Problem A. Area and Circumference

题目描述:给定平面上的\(n\)个矩形,求出面积与周长比的最大值。

solution
枚举。

时间复杂度:\(O(n)\)

Problem C. Canonical Binary Tree

题目描述:有\(n\)个点,每次拿出\(2^x<=n\)个点(\(x\)取最大)构成一棵满二叉树,将构成的树依次从左到右排列,然后从右到左依次合并最小的两棵树,构成一棵更大的二叉树。那么每个数可以用从根出发的一条路径表示,即一个\(LR\)序列(从根出发每次选择左儿子还是右儿子),现在有若干个询问,若询问给出的是点的编号,则输出其路径表示,如果询问给出的是路径表示,则输出对应的编号。

solution
\(n\)的二进制有多少个\(1\)就有多少棵树,而且每个\(1\)对应的位置就是对应的树的叶子节点数,按照这个很容易就能解决问题。

时间复杂度:\(O(logn)\)

Problem D. Domino

题目描述:给出\(n\)个无序数对,\(m\)个排列好的数字,现在可以选择一个数对排在排列的前面或后面,能排在前面(后面)当且仅当数对中的一个数字与最前面(后面)的数字相同,或者可以选择两个数对,一个放在前面,一个后面,但这两个数对都要是数字相同的数对。问剩下的数对的和的最小值。

solution
枚举。

时间复杂度:\(O(n^2)\)

Problem E. Express Lines

题目描述:在一个有\(n\)个点的环上选择不少于\(2\)个点,而且选择的点不相邻的方案数。

solution
\(dp\),把环拆成链,\(f[i][0\)~\(1][0\)~\(1]\)表示到第\(i\)个点,开头的点有没有选,第\(i\)个点有没有选的方案。答案等于\(f[n][0][0]+f[n][0][1]+f[n][1][0]\)

时间复杂度:\(O(n)\)

Problem F. Filter-Art

题目描述:有一个\(n \times m\)的网格图,每个格子一开始是零,可以在网格中选择若干个边长相等的正方形,选择的第一个正方形里面的数加\(1\),第二个加\(2\),以此类推,但选择的每个正方形至少有一个网格没有被其它选择的正方形覆盖。现在给出最后的网格图,求对应的一种方案。

solution
枚举边长,由于每个正方形至少有一个网格没有被其它选择的正方形覆盖,因此每次找到最上最左的不为零的格子,这个格子的数就是对应的正方形编号,然后将这个正方形减掉,最终整个网格图都为零则找到一个解。这里减掉一个正方形可以用二维前缀和来维护。

时间复杂度:\(O(n^3)\)

Problem G. Game

题目描述:有\(m\)个球,每个球上有两个按钮,一个对应蓝色,一个对应红色,但不知道哪个按钮对应哪种颜色。现在以放回的方式依次取出两个球,记录按下的按钮对应的颜色,如果两个球选择的颜色相同,则赢,否则输。现在知道其中一个取出的球的编号不超过\(k\),且这个球选择的颜色是蓝色,问赢的概率。

solution
条件概率,乘法公式。设事件\(A\)为赢,\(B\)为其中一个取出的球的编号不超过\(k\)且这个球选择的颜色是蓝色。
\[P(A|B)=\frac{P(AB)}{P(B)}=\frac{2(k)(m)-k^2}{2(k)(2m)-k^2}=\frac{2m-k}{4m-k}\]

时间复杂度:\(O(1)\)

Problem I. "Injurious" Triples

题目描述:在一个序列里面找出一个三个数的子序列满足这三个数按原顺序构成等差数列。

solution
暴力枚举两个数,判断另一个数是否存在。

时间复杂度:\(O(n^2)\)

Problem M. Munich

题目描述:有三种日票,第一种是成人票,价格为\(p_1\),第二种是儿童票,价格为\(p_2\),但儿童也可以买成人票,第三种是团体票,最多可以有\(5\)个成人,一个成人可以换成\(1\)个或\(2\)个儿童,价格为\(p_3\)。还有三种三日票,跟普通日票一样,只是能用三日而已。现在有\(m\)个成人,\(n\)个儿童来玩\(k(1\leq k \leq 3)\)天,问最少花费多少钱买票。

solution
\(dp\)。\(f[i][j]\)表示\(i\)个成人,\(j\)个儿童已经买了票的最少花费,然后按题意转移就好。

时间复杂度:\(O(n^2)\)

2010 NEERC Western subregional的更多相关文章

  1. 2009-2010 ACM-ICPC, NEERC, Western Subregional Contest

    2009-2010 ACM-ICPC, NEERC, Western Subregional Contest 排名 A B C D E F G H I J K L X 1 0 1 1 1 0 1 X ...

  2. Round 0: Regionals 2010 :: NEERC Eastern Subregional

    Round 0: Regionals 2010 :: NEERC Eastern Subregional 贴吧题解(官方)? 网上的题解 水 A Murphy's Law 题意:Anka拿着一块涂着黄 ...

  3. 【GYM101409】2010-2011 ACM-ICPC, NEERC, Western Subregional Contest

    A-Area and Circumference 题目大意:在平面上给出$N$个三角形,问周长和面积比的最大值. #include <iostream> #include <algo ...

  4. Regionals 2010 :: NEERC Eastern Subregional

    遇到的问题:题目看错...(TAT英语渣渣没办法) 这里具体就讲一些思想和trick ①A题遇到了公式里面的单位问题. ②E题就是变量初始化忘记了 ③J题就是分情况讨论,实际上没有那么难...(题目读 ...

  5. 2016-2017 ACM-ICPC, NEERC, Southern Subregional Contest (Online Mirror) in codeforces(codeforces730)

    A.Toda 2 思路:可以有二分来得到最后的数值,然后每次排序去掉最大的两个,或者3个(奇数时). /************************************************ ...

  6. 【2015-2016 ACM-ICPC, NEERC, Northern Subregional Contest D】---暑假三校训练

    2015-2016 ACM-ICPC, NEERC, Northern Subregional Contest D Problem D. Distribution in Metagonia Input ...

  7. 2018-2019 ICPC, NEERC, Southern Subregional Contest

    目录 2018-2019 ICPC, NEERC, Southern Subregional Contest (Codeforces 1070) A.Find a Number(BFS) C.Clou ...

  8. NEERC Southern Subregional 2011

    NEERC Southern Subregional 2011 A - Bonnie and Clyde solution 双指针搞搞就好. 时间复杂度:\(O(n)\) B - Building F ...

  9. NEERC Southern Subregional 2012

    NEERC Southern Subregional 2012 Problem B. Chess Championship 题目描述:有两个序列\(a, b\),两个序列都有\(n\)个数,并且这\( ...

随机推荐

  1. 浅谈个人对RAID技术的理解

    RAID,字面意思为一种廉价的冗余磁盘阵列,它是通过将大量的磁盘分组,实现了数据冗余,目的是为了保护数据.RAID现已经应用于计算机各个领域.它的优点是降低了工作成本并提高了效率,并且使系统有稳定的运 ...

  2. spring整合redis(jedis)

    真是一步一个坑阿,学点新技术,这么难,这个异常: java.lang.IllegalStateException: Could not load TestContextBootstrapper [nu ...

  3. MySQL基础(二):视图、触发器、函数、事务、存储过程

    一.视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,并可以将其当作表来使用. 视图和上一篇学到的临时表搜索类似. ...

  4. python进阶:Python进程、线程、队列、生产者/消费者模式、协程

    一.进程和线程的基本理解 1.进程 程序是由指令和数据组成的,编译为二进制格式后在硬盘存储,程序启动的过程是将二进制数据加载进内存,这个启动了的程序就称作进程(可简单理解为进行中的程序).例如打开一个 ...

  5. Python 零基础 快速入门 趣味教程 (咪博士 海龟绘图 turtle) 1. 神秘朋友

    Python (Windows 下) 自带了一个非常有趣的 海龟绘图程序 (turtle),它是本系列课程的主角. 在 PyCharm 中,新建一个项目,然后在代码编辑器中输入 import turt ...

  6. 【刷题】BZOJ 4316 小C的独立集

    Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...

  7. 沉迷AC自动机无法自拔之:[UVA 11468] Substring

    图片加载可能有点慢,请跳过题面先看题解,谢谢 这个鬼题目,上一波套路好了 先用题目给的模板串建\(AC\)自动机,把单词结尾标记为 \(val=1\),然后在建好的\(AC\)自动机上跑 \(dp\) ...

  8. 【bzoj1044】木棍分割

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  9. MHN蜜罐的安装部署

    MHN(Modern Honey Network),是一个用于管理和收集蜜罐数据的中心服务器.通过MHN,可以实现快速部署多种类型的蜜罐并且通过web可视化界面显示蜜罐收集的数据,目前支持的蜜罐类型有 ...

  10. 神奇:java中float,double,int的值比较运算

    float x = 302.01f;    System.out.println(x == 302.01); //false  System.out.println(x == 302.01f); // ...