bzoj4514 [Sdoi2016]数字配对(网络流)
Description
Input
Output
一行一个数,最多进行多少次配对
Sample Input
2 4 8
2 200 7
-1 -2 1
Sample Output
HINT
n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5
Source
鸣谢Menci上传
主要是要注意到质因数有几个(2^2算两个),这样个数为奇数只能与个数为偶数配对,个数为偶数只能和个数为奇数配对,然后就是一个二分图,随便建一建图跑最大费用流就好。
program rrr(input,output);
const
inf=;
type
etype=record
t,c,next,rev:longint;
w:int64;
end;
var
e:array[..]of etype;
num,a,d,q,fre,frv:array[..]of longint;
s:array[..]of boolean;
p:array[..]of longint;
c,dis:array[..]of int64;
inq:array[..]of boolean;
n,m,i,j,x,b,cnt,h,t,ans:longint;
w,f:int64;
function min(a,b:int64):int64;
begin
if a<b then exit(a) else exit(b);
end;
procedure ins(x,y,c:longint;w:int64);
begin
inc(cnt);e[cnt].t:=y;e[cnt].c:=c;e[cnt].w:=w;e[cnt].next:=a[x];a[x]:=cnt;
end;
procedure add(x,y,c:longint;w:int64);
begin
ins(x,y,c,w);e[cnt].rev:=cnt+;ins(y,x,,-w);e[cnt].rev:=cnt-;
end;
procedure spfa;
begin
for i:= to n do dis[i]:=-inf;dis[]:=;
h:=;t:=;q[]:=;inq[]:=true;
while h<>t do
begin
inc(h);if h> then h:=;
i:=a[q[h]];
while i<> do
begin
if (e[i].c>) and (dis[q[h]]+e[i].w>dis[e[i].t]) then
begin
dis[e[i].t]:=dis[q[h]]+e[i].w;
fre[e[i].t]:=i;frv[e[i].t]:=q[h];
if not inq[e[i].t] then
begin
inc(t);if t> then t:=;
q[t]:=e[i].t;inq[e[i].t]:=true;
end;
end;
i:=e[i].next;
end;
inq[q[h]]:=false;
end;
end;
begin
assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
fillchar(s,sizeof(s),true);s[]:=false;
for i:= to do if s[i] then
begin
j:=i+i;while j<= do begin s[j]:=false;j:=j+i; end;
end;
m:=;for i:= to do if s[i] then begin inc(m);p[m]:=i; end;
readln(n);
for i:= to n do read(num[i]);
for i:= to n do
begin
x:=num[i];j:=;d[i]:=;
while x> do begin while x mod p[j]= do begin inc(d[i]);x:=x div p[j]; end;inc(j);if j>m then break; end;
if x> then inc(d[i]);
end;
fillchar(a,sizeof(a),);cnt:=;
for i:= to n do begin read(b);if d[i] mod = then add(i,n+,b,) else add(,i,b,); end;
for i:= to n do read(c[i]);
for i:= to n do for j:=i+ to n do
if (abs(d[i]-d[j])=) and ((num[i] mod num[j]=) or (num[j] mod num[i]=)) then
begin
if d[i] mod = then add(j,i,,c[i]*c[j]) else add(i,j,,c[i]*c[j]);
end;
ans:=;inc(n);w:=;
while true do
begin
spfa;
if dis[n]=-inf then break;
i:=n;f:=;
while i<> do begin f:=min(f,e[fre[i]].c);i:=frv[i]; end;
if w+f*dis[n]< then begin ans:=ans+w div (-dis[n]);break; end
else begin ans:=ans+f;w:=w+f*dis[n]; end;
i:=n;while i<> do begin dec(e[fre[i]].c,f);inc(e[e[fre[i]].rev].c,f);i:=frv[i]; end;
end;
write(ans);
close(input);close(output);
end.
bzoj4514 [Sdoi2016]数字配对(网络流)的更多相关文章
- BZOJ4514——[Sdoi2016]数字配对
有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...
- bzoj4514 [Sdoi2016]数字配对
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
- BZOJ4514[Sdoi2016]数字配对——最大费用最大流
题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...
- [bzoj4514][SDOI2016]数字配对——二分图
题目描述 传送门 题解: 这个题真的是巨坑,经过了6个WA,2个TLE,1个RE后才终于搞出来,中间都有点放弃希望了... 主要是一定要注意longlong! 下面开始说明题解. 朴素的想法是: 如果 ...
- BZOJ4514 [Sdoi2016]数字配对 【费用流】
题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...
- bzoj4514: [Sdoi2016]数字配对--费用流
看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...
- bzoj4514: [Sdoi2016]数字配对(费用流)
传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...
- $loj\ 2031\ [SDOI2016]$数字配对 网络流
正解:网络流 解题报告: 我永远喜欢$loj$! 显然先预处理哪些$a$之间可以连边,然后考虑建两排点,连流量为$c_{i}\cdot c_{j}$,然后$ST$连$inf$,跑个费用流? 然后现在碰 ...
- 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流
[bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...
随机推荐
- 关于Altium Designer 提示发送错误报告解决方法
提示是这样子,,,,,, 稍微有点问题就提示,,,复制也提示,,,,移动也提示,,,,,,算是服了这个软件了.......真是忍无可忍,那就无需再忍,解决掉 以前是安装上一个虚拟的打印机就好了,,,其 ...
- navicat 连接Oracle 报错:Cannot load OCI DLL, 126
1.64位win7 安装了oracle11g 使用Navicat for Oracle cannot load OCI DLL,126 解决方法:navicat 菜单中 -工具->选项-> ...
- [Usaco2009 Feb]Revamping Trails 道路升级 BZOJ1579
分析: 比较裸的分层图最短路,我的实现方式是,每次求出1所有节点的最短路,之后用每一个节点更新与其相连的节点(取较小值),之后做K次,就求出了分层图的最短路了. 附上代码: #include < ...
- 一个IOS自动化打包的脚本
网上找了一个脚本,在其中进行了修改,只需要一条命令就可以了 支持自动导入配置文件 支持自动安装p12证书 支持自动修改版本号和build版本号 支持自动修改app显示名称 支持自动修改bundle i ...
- NanoPC-T2制作刷机包
anoPC-T2制作刷机包 前提:到友善的wiki中,仔细看编译uboot.内核.制作刷机包的教程. 准备工作: 1. 虚拟机Ubuntu安装,并安装n多软件可以支撑编译内核等等. 2. 安装交叉编 ...
- 【WPF】数据验证
原文:[WPF]数据验证 引言 数据验证在任何用户界面程序中都是不可缺少的一部分.在WPF中,数据验证更是和绑定紧紧联系在一起,下面简单介绍MVVM模式下常用的几种验证方式. 错误信息显示 ...
- ASP.NET多行文本框限制字符个数
asp.net中TextBox当设置TextMode = Multiline时,其MaxLength属性无效.可使用JS进行辅助限制输入的字符个数.中文算两个字符,西文算1个字符. TextBox属性 ...
- WinForm 随手记
从今天开始咱们正式进入WinForm开发模式 首先很官方的介绍下什么是winform:客户端应用程序:C/S 这就是winform 有什么特别特别重要的特点呢:可以操作用户电脑上的文件 举个简单的例子 ...
- Python_xlutils.copy
import xlrd import xlwt from xlutils.copy import copy # 读取工作簿 objWB = xlrd.open_workbook(r'C:\Users\ ...
- ecCodes 学习 利用ecCodes fortran90 api对GRIB文件进行读写
参考 https://www.ecmwf.int/assets/elearning/eccodes/eccodes2/story_html5.htmlhttps://confluence.ecmwf. ...