题解

01分数规划,二分加树背包……

代码

#include <bits/stdc++.h>
#define enter putchar('\n')
#define space putchar(' ')
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define MAXN 2505
#define mo 999999137
#define pb push_back
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
} int K,N,siz[MAXN];
db S[MAXN],P[MAXN],val[MAXN],dp[MAXN][MAXN],tmp[MAXN];
struct node {
int to,next;
}E[MAXN * 2];
int head[MAXN],sumE;
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
void Init() {
read(K);read(N);
int u;
for(int i = 2 ; i <= N + 1; ++i) {
scanf("%lf%lf%d",&S[i],&P[i],&u);++u;
add(u,i);add(i,u);
}
++N;
}
void dfs(int u,int fa) {
siz[u] = 0;
dp[u][0] = 0.0;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != fa) {
dfs(v,u);
for(int i = 0 ; i <= siz[u] + siz[v] ; ++i) tmp[i] = -1e9;
for(int i = 0 ; i <= siz[u] ; ++i) {
for(int j = 0 ; j <= siz[v] ; ++j) {
tmp[i + j] = max(tmp[i + j],dp[u][i] + dp[v][j]);
}
}
siz[u] += siz[v];
for(int i = 0 ; i <= siz[u] ; ++i) dp[u][i] = tmp[i];
}
}
++siz[u];
for(int i = siz[u] ; i >= 1 ; --i) {
dp[u][i] = dp[u][i - 1] + val[u];
}
}
bool check(db mid) {
for(int i = 1 ; i <= N ; ++i) {
val[i] = P[i] - S[i] * mid;
}
dfs(1,0);
return dp[1][K + 1] >= 0.0;
}
void Solve() {
db L = 0,R = 1000;
int cnt = 50;
while(cnt--) {
db mid = (L + R) / 2.0;
if(check(mid)) L = mid;
else R = mid;
}
printf("%.3lf\n",L);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
return 0;
}

【LOJ】#2071. 「JSOI2016」最佳团体的更多相关文章

  1. loj#2071. 「JSOI2016」最佳团体

    题目链接 loj#2071. 「JSOI2016」最佳团体 题解 树形dp强行01分规 代码 #include<cstdio> #include<cstring> #inclu ...

  2. loj2071 「JSOI2016」最佳团体

    分数规划+树形依赖背包orz #include <iostream> #include <cstring> #include <cstdio> #include & ...

  3. loj#2076. 「JSOI2016」炸弹攻击 模拟退火

    目录 题目链接 题解 代码 题目链接 loj#2076. 「JSOI2016」炸弹攻击 题解 模拟退火 退火时,由于答案比较小,但是温度比较高 所以在算exp时最好把相差的点数乘以一个常数让选取更差的 ...

  4. [LOJ 2082] 「JSOI2016」炸弹攻击 2

    [LOJ 2082] 「JSOI2016」炸弹攻击 2 链接 链接 题解 枚举发射源,将发射源当做原点,对敌人和激光塔极角排序. 由于敌人纵坐标均为正,而其它点均为负,因此每两个角度差在 \(\pi\ ...

  5. LOJ#2082. 「JSOI2016」炸弹攻击 2(计算几何+双指针)

    题面 传送门 题解 我们枚举一下发射源,并把敌人和激光塔按极角排序,那么一组合法解就是两个极角之差不超过\(\pi\)且中间有敌人的三元组数,预处理一下前缀和然后用双指针就行了 //minamoto ...

  6. LOJ#2076. 「JSOI2016」炸弹攻击(模拟退火)

    题面 传送门 题解 退火就好了 记得因为答案比较小,但是温度比较高,所以在算\(\exp\)的时候最好把相差的点数乘上一个常数来让选取更劣解的概率降低 话虽如此然而我自己打的退火答案永远是\(0\)- ...

  7. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  8. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  9. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

随机推荐

  1. MT【111】画图估计

    评:此类方程是超越方程,一般情况下无法解出具体的解,常见手段:1.画图  2.猜根.此处可以取特殊值a=2.5,b=3.5,容易知道此时$x=2.5\in(2,3)$

  2. 解决 Previous operation has not finihsed; run ‘cleanup’ if it was interrupted Please execute the ‘Cleanup’ command

    更新时遇到这个问题,解决方法如下: 把根目录下的.svn目录删除掉,再checkout,然后就会出现下面的加version的action.   疯吻IT

  3. Maven添加第三方库及部署配置

    配置其实很简单,还是修改~/.m2/settings.xml文件,具体用文件说话,其他不解释. <?xml version="1.0" encoding="UTF- ...

  4. luogu1083 [NOIp2012]借教室 (二分答案+差分)

    先二分一个答案x,然后通过差分来看有没有不满足的 #include<bits/stdc++.h> #define pa pair<int,int> #define lowb(x ...

  5. 解题:NOI 2014 随机数生成器

    题面 为什么NOI2014有模拟题=.=??? 按题意把序列生成出来之后,对每一行维护一个能取到的最左侧和能取到的最右侧.从小到大$O(n^2)$枚举数字看看能否填入,能填入则暴力$O(n)$更新信息 ...

  6. WPF 杂谈——开篇简言

    这俩年多来笔者一直在从事关于WPF的开发.虽然不能说是专家级别的.但是对于WPF的应用还是有一定的了解.论他的灵活性决对不在WinForm之下.WPF的出现更是引发一段热议.他的何去何从更是让很多人感 ...

  7. oracle:delete和truncate

    oracle中清空表数据的两种方法 1.delete from t 2 .truncate table t 区别: 1.delete是dml操作:truncate是ddl操作,ddl隐式提交不能回滚 ...

  8. yolo详解

    文章<You Only Look Once: Unified, Real-Time Object Detection>提出方法下面简称YOLO. 目前,基于深度学习算法的一系列目标检测算法 ...

  9. Apache POI - Excel

    基于模板的EXCEL报表组件ExcelUtils:http://blog.csdn.net/hanqunfeng/article/details/4834875 http://blog.csdn.ne ...

  10. hdu 5290 Bombing plan

    http://acm.hdu.edu.cn/showproblem.php?pid=5290 题意: 一棵树,每个点有一个权值wi,选择点i即可破坏所有距离点i<=wi的点,问破坏所有点 最少需 ...