题解

二分一个横坐标,过这个横坐标做一条和y轴平行的直线,相当于在这条直线上做区间覆盖,如果区间有交的话,那么答案是True

否则的话取两个不相交的区间,如果这两个圆相离或相切则不合法

否则看看相交的部分在二分的横坐标的左边还是右边,进行更新

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
} int N,tot;
bool dcmp(db a,db b) {
return fabs(a - b) < eps;
}
struct Point {
db x,y;
Point(db _x = 0.0,db _y = 0.0) {
x = _x;y = _y;
}
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x + b.x,a.y + b.y);
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x - b.x,a.y - b.y);
}
friend db operator * (const Point &a,const Point &b) {
return a.x * b.y - a.y * b.x;
}
friend Point operator * (const Point &a,const db &d) {
return Point(a.x * d,a.y * d);
}
friend Point operator / (const Point &a,const db &d) {
return Point(a.x / d,a.y / d);
}
friend db dot(const Point &a,const Point &b) {
return a.x * b.x + a.y * b.y;
}
db norm() {
return x * x + y * y;
} };
struct Circle {
Point O;
db R;
}C[MAXN];
struct line {
db s,t;
int id;
friend bool operator < (const line &a,const line &b) {
return a.t < b.t || (a.t == b.t && a.s < b.s);
}
}L[MAXN];
db dis(Point a,Point b) {
return sqrt((b - a).norm());
}
int check(db mid) {
tot = 0;
for(int i = 1 ; i <= N ; ++i) {
if(fabs(mid - C[i].O.x) >= C[i].R) {
if(mid > C[i].O.x) return -1;
else return 1;
}
db t = sqrt(C[i].R * C[i].R - (C[i].O.x - mid) * (C[i].O.x - mid));
L[++tot] = (line){C[i].O.y - t,C[i].O.y + t,i}; }
sort(L + 1,L + tot + 1);
db a = L[1].s,b = L[1].t;
for(int i = 2 ; i <= N ; ++i) {
a = max(a,L[i].s);b = min(b,L[i].t);
}
if(a + eps < b) return 0;
for(int i = 2 ; i <= N ; ++i) {
if(L[i].s >= L[1].t) {
int u = L[1].id,v = L[i].id;
if(dis(C[u].O,C[v].O) >= C[u].R + C[v].R) return -2;
else {
Point p = C[u].O + (C[v].O - C[u].O) * (C[u].R / dis(C[v].O,C[u].O));
if(p.x < mid) return -1;
else return 1;
}
}
}
}
void Solve() {
read(N);
for(int i = 1 ; i <= N ; ++i) {
scanf("%lf%lf%lf",&C[i].O.x,&C[i].O.y,&C[i].R);
}
db L = C[1].O.x - C[1].R,R = C[1].O.x + C[1].R;
for(int i = 2 ; i <= N ; ++i) {
L = min(L,C[i].O.x - C[i].R);
R = max(R,C[i].O.x + C[i].R);
}
int cnt = 50;
while(cnt--) {
db mid = (L + R) / 2;
int x = check(mid);
if(x == -2) {puts("NO");return;}
if(x == 0) {puts("YES");return;}
if(x == -1) {R = mid;}
else {L = mid;}
}
if(check(L) != 0) puts("NO");
else puts("YES");
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【BZOJ】2289: 【POJ Challenge】圆,圆,圆的更多相关文章

  1. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  2. BZOJ 2295: [POJ Challenge]我爱你啊

    由于是子序列,那么难度就在于读入 #include<cstdio> #include<algorithm> #include<cstring> using name ...

  3. bzoj 2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MB Description ftiasch是个十分受女生欢迎的同学,所以 ...

  4. 【链表】BZOJ 2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 382  Solved: 111[Submit][S ...

  5. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  6. bzoj 2288 【POJ Challenge】生日礼物 双向链表+堆优化

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1003  Solved: 317[Submit][ ...

  7. 【BZOJ 2288】 2288: 【POJ Challenge】生日礼物 (贪心+优先队列+双向链表)

    2288: [POJ Challenge]生日礼物 Description ftiasch 18岁生日的时候,lqp18_31给她看了一个神奇的序列 A1, A2, ..., AN. 她被允许选择不超 ...

  8. BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 986  Solved: 572[Submit][S ...

  9. bzoj2287【POJ Challenge】消失之物 缺一01背包

    bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...

  10. BZOJ2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 284  Solved: 82[Submit][St ...

随机推荐

  1. from表单文件上传后页面跳转解决办法

    from表单上传文件,路径跳转后,又不能转发回来. 本人的一个解决办法是.返回一段html代码,浏览器解析后后退一步,回到原来的页面并刷新. return "<html>< ...

  2. (转)灵活控制 Hibernate 的日志或 SQL 输出,以便于诊断

    背景:项目开发需要.之前对于hibernate日志输出,log4j的绑定,之间的关系一直不是很清楚.终于找到一篇介绍的很详细的文章. 文章出处:https://unmi.cc/hibernate-lo ...

  3. wps相关问题

    1 总汇 1.1 关闭wps中“我的wps”选项卡 我记得之前的WPS都是可以设置的不启动"我的WPS"的,但是最新版本中好象没有发现这个设置,反正小编是没找到,但是这并不影响我们 ...

  4. springboot配置文件的配置

    转:https://www.cnblogs.com/zheting/p/6707036.html Spring Boot使用了一个全局的配置文件application.properties,放在src ...

  5. kubernetes配置secret拉取私仓镜像

    2017.05.10 19:48* 字数 390 阅读 5216评论 0喜欢 8 对于公司内部的项目, 我们不可能使用公有开放的镜像仓库, 一般情况可能会花钱买docker私仓服务, 或者说自己在服务 ...

  6. 一个简单的Kubernetes应用部署示例

    说明 我们通过一个示例来演示一下kubernetes部署应用的基本配置. 这个示例相对比较简单,就是一个tomcat应用加上一个mysql数据库 在tomcat里运行一个简单的webappp,这个ap ...

  7. python中的requests使用小结

    现接触到的很少,详细的官方教程地址: requests官方指南文档:http://docs.python-requests.org/zh_CN/latest/user/quickstart.html ...

  8. vue-cli内部webpack的打包优化

    在此之前,我们先谈谈前端项目的性能优化. 优化前端项目无非就是2方面的优化: 一.网络性能优化(重点) 减少请求数量(webpack的天职就是打包) 减少请求资源大小(压缩gzip,后端会完成) CD ...

  9. iperf测试网络带宽

    http://blog.chinaaet.com/telantan/p/30901 https://boke.wsfnk.com/archives/288.html https://www.ibm.c ...

  10. Numpy - Pandas - Matplot 功能与函数名 速查

    用Python做数据分析,涉及到的函数实在是太多了,容易忘记,去网上查中文基本上差不到,英文有时候描述不清楚问题. 这里搞个针对个人习惯的函数汇总速查手册,下次需要用一个什么功能,就在这里面查到对应的 ...