Rank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 433    Accepted Submission(s): 207

Problem Description

Recently in Teddy's hometown there is a competition named "Cow Year Blow Cow".N competitors had took part in this competition.The competition was so intense that the rank was changing and changing.
Now the question is:
How many different ways that n competitors can rank in a competition, allowing for the possibility of ties. 
as the answer will be very large,you can just output the answer MOD 20090126.
Here are the ways when N = 2:
P1 < P2
P2 < P1
P1 = P2 
 

Input

The first line will contain a T,then T cases followed.
each case only contain one integer N (N <= 100),indicating the number of people.
 

Output

One integer pey line represent the answer MOD 20090126.
 

Sample Input

2
2
3
 

Sample Output

3
13
 

Author

teddy
 

Source

第二类Stirling数 S(p,k)

   

S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。

k!S(p,k)是把p个人分进k间有差别(如:被标有房号)的房间(无空房)的方法数。

   

S(p,k)的递推公式是:S(p,k)=k*S(p-1,k)+S(p-1,k-1) ,1<= k<=p-1

边界条件:S(p,p)=1 ,p>=0    S(p,0)=0 ,p>=1

  

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);

可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。

为n个队员分配k个名次,k的取值为1到n。可将问题转化为将n个球正好放入k的不同的盒子,即为第二类斯特林数,因为k个盒子不同,存在k!个排列,所以为k!× S2[n][k],答案为sum(i!*S2[n][i]) | 1<=i<=k

 //2017-08-05
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long using namespace std; const int N = ;
const int MOD = ;
ll stir2[N][N], ans[N], factorial[N]; void init(){
factorial[] = ;
for(int i = ; i < N; i++)
factorial[i] = (factorial[i-]*i)%MOD;
memset(stir2, , sizeof(stir2));
for(int n = ; n < N; n++){
stir2[n][] = ;
stir2[n][n] = ;
for(int k = ; k < n; k++){
stir2[n][k] = stir2[n-][k-]+k*stir2[n-][k];
stir2[n][k] %= MOD;
}
}
} int main()
{
int T, n;
init();
cin>>T;
while(T--){
cin>>n;
ll ans = ;
for(int i = ; i <= n; i++)
ans = (ans + factorial[i]*stir2[n][i]) % MOD;
cout<<ans<<endl;
} return ;
}

HDU2643(SummerTrainingDay05-P 第二类斯特林数)的更多相关文章

  1. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  2. 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

    [BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...

  3. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

  4. HDU - 4625 JZPTREE(第二类斯特林数+树DP)

    https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...

  5. 【CF961G】Partitions 第二类斯特林数

    [CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...

  6. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  7. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  8. 【CF961G】Partitions(第二类斯特林数)

    [CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...

  9. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

随机推荐

  1. Postgres 的 Array 类型

    mysql 不支持 Array 类型 一.Postgres 原生SQL 适用场景:可以用于实现贴标签功能 1.定义 CREATE TABLE "Students" ( name V ...

  2. captcha ~ 生成验证码图片

    验证码在我们的世界中可以保护我们的信息安全的一个保障之一 这就是生成验证码的代码     # 导报 from captcha.image import ImageCaptcha #验证码的包 from ...

  3. OS之内存管理 --- 虚拟内存管理(一)

    虚拟内存的背景 在基本的内存管理策略中,所有的策略的相同点都是:每个进程在执行之前需要完全处于内存中.那有没有一种方法可以不需要将进程所有页面加载到内存中就可以开始运行进程呢?有没有可能在进程需要某些 ...

  4. MethodImplOptions.Synchronized的一点讨论

    Review代码发现有一个方法加了[MethodImpl(MethodImplOptions.Synchronized)] 属性,这个属性的目的,从名字上就可以看出,是要对所有线程进行同步执行. 对方 ...

  5. code=exited,status=1/failure;failed to start LSB:Bring up/down networking

    环境: CentOS 7 vmware 12 操作: 复制可使用的vmware centOS 7系统至新环境 问题: 无法启动网络 查看“systemctl status network" ...

  6. Vue图片懒加载插件 - vue lazyload的简单使用

    Vue module for lazyloading images in your applications. Some of goals of this project worth noting i ...

  7. notecase的下载与安装(全网最详细)(图文详解)

    不多说,直接上干货! notecase是什么? 一个按照树状结构来组织文档内容的笔记管理程序 1.双击 2.aceept 3.选择安装所放置的目录路径 4.选择开启目录文件夹 我这里,保持默认 建议默 ...

  8. Django+Echarts画图实例

    所有演示均基于Django2.0 阅读此篇文章你可以: 了解Django中aggregate和annotate函数的使用方法 获取一个Django+Echarts绘制柱状图的完整示例 需求说明 一张会 ...

  9. kafka 日志结构

    1.kafka日志结构 直接举例子: 例如kafka有个名字叫 haha 的topic,那么kafka日志下面有kafka-0,kafka-1,kafka-2...,kafka-n,具体多少个,创建分 ...

  10. INTEST/EXTEST SCAN

    INTEST scan指的是对IP 内部的scan cell的扫描测试,针对IP内部的flip-flop进行shift/capture的操作.和INTEST SCAN 对应的就是EXTEST SCAN ...