和线段树类似,每个结点也要打lazy标记

但是lazy标记和线段树不一样

具体区别在于可持久化后lazy-tag不用往下传递,而是固定在这个区间并不断累加,变成了这个区间固有的性质(有点像分块的标记了)

update就按照这么来

int update(int last,int L,int R,int c,int l,int r){
int now=++size;
T[now]=T[last]; if(L<=l && R>=r){
T[now].sum+=(r-l+)*c;
T[now].add+=c;
return now;
} int mid=l+r>>;
if(L<=mid)T[now].lc=update(T[last].lc,L,R,c,l,mid);
if(R>mid)T[now].rc=update(T[last].rc,L,R,c,mid+,r);
pushup(l,r,now);
return now;
}

查询时由于lazytag固定在区间上。所以向下查询的时候要把上层的lazytag的影响都算上,即递归时传递一个上层区间的  影响值(例如add)

ll query(int now,int L,int R,int add,int l,int r){
if(L<=l && R>=r) return T[now].sum+(ll)add*(r-l+);
int mid=l+r>>;
ll res=;add+=T[now].add;
if(L<=mid)res+=query(T[now].lc,L,R,add,l,mid);
if(R>mid)res+=query(T[now].rc,L,R,add,mid+,r);
return res;
}

此外还有合并维护时,由于子区间没有收到父区间的影响,所以合并时还要算父区间的lazytag

void pushup(int l,int r,int rt){T[rt].sum=T[T[rt].lc].sum+T[T[rt].rc].sum+T[rt].add*(r-l+);}

最后是完整代码,其实本题版本回滚时还可以吧size往回滚,以此节省内存

/*
主席树区间更新
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 100005
ll n,m,a[maxn];
struct Node{int lc,rc;ll sum,add;}T[maxn*];
int size,rt[maxn];
void pushup(int l,int r,int rt){T[rt].sum=T[T[rt].lc].sum+T[T[rt].rc].sum+T[rt].add*(r-l+);}
int build(int l,int r){
int now=++size;
if(l==r){
T[now].lc=T[now].rc=;
T[now].sum=a[l];
return now;
}
int mid=l+r>>;
T[now].lc=build(l,mid);
T[now].rc=build(mid+,r);
pushup(l,r,now);
return now;
}
int update(int last,int L,int R,int c,int l,int r){
int now=++size;
T[now]=T[last]; if(L<=l && R>=r){
T[now].sum+=(r-l+)*c;
T[now].add+=c;
return now;
} int mid=l+r>>;
if(L<=mid)T[now].lc=update(T[last].lc,L,R,c,l,mid);
if(R>mid)T[now].rc=update(T[last].rc,L,R,c,mid+,r);
pushup(l,r,now);
return now;
}
ll query(int now,int L,int R,int add,int l,int r){
if(L<=l && R>=r) return T[now].sum+(ll)add*(r-l+);
int mid=l+r>>;
ll res=;add+=T[now].add;
if(L<=mid)res+=query(T[now].lc,L,R,add,l,mid);
if(R>mid)res+=query(T[now].rc,L,R,add,mid+,r);
return res;
}
void init(){
size=;
memset(rt,,sizeof rt);
memset(T,,sizeof T);
}
int main(){
while(scanf("%lld%lld",&n,&m)==){
init();
for(int i=;i<=n;i++)scanf("%lld",&a[i]); int cur=,l,r,c;char op[];
rt[cur]=build(,n);
while(m--){
scanf("%s",op);
if(op[]=='C'){scanf("%d%d%d",&l,&r,&c);rt[++cur]=update(rt[cur-],l,r,c,,n);}
if(op[]=='Q'){scanf("%d%d",&l,&r);cout<<query(rt[cur],l,r,,,n)<<'\n';}
if(op[]=='H'){
scanf("%d%d%d",&l,&r,&c);
cout<<query(rt[c],l,r,,,n)<<'\n';
}
if(op[]=='B'){scanf("%d",&c);cur=c;}
}
// puts("");
}
}

可持久化线段树——区间更新hdu4348的更多相关文章

  1. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  2. HDU 1556 Color the ball(线段树区间更新)

    Color the ball 我真的该认真的复习一下以前没懂的知识了,今天看了一下线段树,以前只会用模板,现在看懂了之后,发现还有这么多巧妙的地方,好厉害啊 所以就应该尽量搞懂 弄明白每个知识点 [题 ...

  3. hihoCoder 1080 : 更为复杂的买卖房屋姿势 线段树区间更新

    #1080 : 更为复杂的买卖房屋姿势 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho都是游戏迷,“模拟都市”是他们非常喜欢的一个游戏,在这个游戏里面他们 ...

  4. HDU 5023 A Corrupt Mayor's Performance Art(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 解题报告:一面墙长度为n,有N个单元,每个单元编号从1到n,墙的初始的颜色是2,一共有30种颜色 ...

  5. HDU 4902 Nice boat 2014杭电多校训练赛第四场F题(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4902 解题报告:输入一个序列,然后有q次操作,操作有两种,第一种是把区间 (l,r) 变成x,第二种是 ...

  6. HDU 1698 线段树 区间更新求和

    一开始这条链子全都是1 #include<stdio.h> #include<string.h> #include<algorithm> #include<m ...

  7. POJ-2528 Mayor's posters (线段树区间更新+离散化)

    题目分析:线段树区间更新+离散化 代码如下: # include<iostream> # include<cstdio> # include<queue> # in ...

  8. ZOJ 1610 Count the Colors (线段树区间更新)

    题目链接 题意 : 一根木棍,长8000,然后分别在不同的区间涂上不同的颜色,问你最后能够看到多少颜色,然后每个颜色有多少段,颜色大小从头到尾输出. 思路 :线段树区间更新一下,然后标记一下,最后从头 ...

  9. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

随机推荐

  1. 上传图片,通过node服务器存储在指定目录

    最近做毕设,需要上传图片,因为在本地服务器运行,所以想着前端上传后,通过node服务器接收图片,存储在指定的目录下. 一.前端实现 1.前端的页面和上传图片是利用element-ui组件实现的,&qu ...

  2. Hadoop系列(三):hadoop基本测试

    下面是对hadoop的一些基本测试示例 Hadoop自带测试类简单使用 这个测试类名叫做 hadoop-mapreduce-client-jobclient.jar,位置在 hadoop/share/ ...

  3. leanote使用本地账户时,去掉待同步的小红点

    切换开发者工具,如下图,点击左上角的箭头图标,选取元素,直接选择小红点. 然后会看到小红点来自于resources/app/public/themes/default.css文件中2092行: .it ...

  4. DP的优化总结

    一.预备知识 \(tD/eD\) 问题:状态 t 维,决策 e 维.时间复杂度\(O(n^{e+t})\). 四边形不等式: 称代价函数 w 满足凸四边形不等式,当:\(w(a,c)+w(b,d)\l ...

  5. 最近公共祖先(LCT)

    来一发\(LCT\)求\(LCA\) \(LCT\)在时间上不占据优势,码量似乎还比树剖,倍增,\(Tarjan\)大一点 但是却是一道\(LCT\)的练手题 对于每一个询问,我们只需要把其中一个点( ...

  6. CC++语法::数组名退化(array decaying)

    参考: CSDN::C/C++中数组名退化为指针的情况 stackoverflow::What is array decaying? 起因 笔者在写memset的时候总想偷一点懒(因为我们一般都是为了 ...

  7. 《STL源码剖析》----2.23 value_type()和__type_traits<>如何实现

    在2.13小节destory()第二版本接受两个迭代器找出元素类型,代码如下 其中value_type()判断出类型,__type_traits判断是否存在trivial destructor 在3. ...

  8. UML(聚合、组合、依赖、继承、接口、类)

  9. localStorage sessionStorage cookie indexedDB

    目录: localStorage sessionStorage cookie indexedDB localStorage localStorage存储的数据能在跨浏览器会话保留 数据可以长期保留,关 ...

  10. Ubuntu屏幕分辨率无1920 1080

    xrandr 没有1920X1080分辨率,所以手动添加一个1080P分辨率,先输入“cvt 1920 1080”命令,查询一下1080P分辨率的有效扫描频率 然后 sudo xrandr --new ...