和线段树类似,每个结点也要打lazy标记

但是lazy标记和线段树不一样

具体区别在于可持久化后lazy-tag不用往下传递,而是固定在这个区间并不断累加,变成了这个区间固有的性质(有点像分块的标记了)

update就按照这么来

int update(int last,int L,int R,int c,int l,int r){
int now=++size;
T[now]=T[last]; if(L<=l && R>=r){
T[now].sum+=(r-l+)*c;
T[now].add+=c;
return now;
} int mid=l+r>>;
if(L<=mid)T[now].lc=update(T[last].lc,L,R,c,l,mid);
if(R>mid)T[now].rc=update(T[last].rc,L,R,c,mid+,r);
pushup(l,r,now);
return now;
}

查询时由于lazytag固定在区间上。所以向下查询的时候要把上层的lazytag的影响都算上,即递归时传递一个上层区间的  影响值(例如add)

ll query(int now,int L,int R,int add,int l,int r){
if(L<=l && R>=r) return T[now].sum+(ll)add*(r-l+);
int mid=l+r>>;
ll res=;add+=T[now].add;
if(L<=mid)res+=query(T[now].lc,L,R,add,l,mid);
if(R>mid)res+=query(T[now].rc,L,R,add,mid+,r);
return res;
}

此外还有合并维护时,由于子区间没有收到父区间的影响,所以合并时还要算父区间的lazytag

void pushup(int l,int r,int rt){T[rt].sum=T[T[rt].lc].sum+T[T[rt].rc].sum+T[rt].add*(r-l+);}

最后是完整代码,其实本题版本回滚时还可以吧size往回滚,以此节省内存

/*
主席树区间更新
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 100005
ll n,m,a[maxn];
struct Node{int lc,rc;ll sum,add;}T[maxn*];
int size,rt[maxn];
void pushup(int l,int r,int rt){T[rt].sum=T[T[rt].lc].sum+T[T[rt].rc].sum+T[rt].add*(r-l+);}
int build(int l,int r){
int now=++size;
if(l==r){
T[now].lc=T[now].rc=;
T[now].sum=a[l];
return now;
}
int mid=l+r>>;
T[now].lc=build(l,mid);
T[now].rc=build(mid+,r);
pushup(l,r,now);
return now;
}
int update(int last,int L,int R,int c,int l,int r){
int now=++size;
T[now]=T[last]; if(L<=l && R>=r){
T[now].sum+=(r-l+)*c;
T[now].add+=c;
return now;
} int mid=l+r>>;
if(L<=mid)T[now].lc=update(T[last].lc,L,R,c,l,mid);
if(R>mid)T[now].rc=update(T[last].rc,L,R,c,mid+,r);
pushup(l,r,now);
return now;
}
ll query(int now,int L,int R,int add,int l,int r){
if(L<=l && R>=r) return T[now].sum+(ll)add*(r-l+);
int mid=l+r>>;
ll res=;add+=T[now].add;
if(L<=mid)res+=query(T[now].lc,L,R,add,l,mid);
if(R>mid)res+=query(T[now].rc,L,R,add,mid+,r);
return res;
}
void init(){
size=;
memset(rt,,sizeof rt);
memset(T,,sizeof T);
}
int main(){
while(scanf("%lld%lld",&n,&m)==){
init();
for(int i=;i<=n;i++)scanf("%lld",&a[i]); int cur=,l,r,c;char op[];
rt[cur]=build(,n);
while(m--){
scanf("%s",op);
if(op[]=='C'){scanf("%d%d%d",&l,&r,&c);rt[++cur]=update(rt[cur-],l,r,c,,n);}
if(op[]=='Q'){scanf("%d%d",&l,&r);cout<<query(rt[cur],l,r,,,n)<<'\n';}
if(op[]=='H'){
scanf("%d%d%d",&l,&r,&c);
cout<<query(rt[c],l,r,,,n)<<'\n';
}
if(op[]=='B'){scanf("%d",&c);cur=c;}
}
// puts("");
}
}

可持久化线段树——区间更新hdu4348的更多相关文章

  1. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  2. HDU 1556 Color the ball(线段树区间更新)

    Color the ball 我真的该认真的复习一下以前没懂的知识了,今天看了一下线段树,以前只会用模板,现在看懂了之后,发现还有这么多巧妙的地方,好厉害啊 所以就应该尽量搞懂 弄明白每个知识点 [题 ...

  3. hihoCoder 1080 : 更为复杂的买卖房屋姿势 线段树区间更新

    #1080 : 更为复杂的买卖房屋姿势 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho都是游戏迷,“模拟都市”是他们非常喜欢的一个游戏,在这个游戏里面他们 ...

  4. HDU 5023 A Corrupt Mayor's Performance Art(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 解题报告:一面墙长度为n,有N个单元,每个单元编号从1到n,墙的初始的颜色是2,一共有30种颜色 ...

  5. HDU 4902 Nice boat 2014杭电多校训练赛第四场F题(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4902 解题报告:输入一个序列,然后有q次操作,操作有两种,第一种是把区间 (l,r) 变成x,第二种是 ...

  6. HDU 1698 线段树 区间更新求和

    一开始这条链子全都是1 #include<stdio.h> #include<string.h> #include<algorithm> #include<m ...

  7. POJ-2528 Mayor's posters (线段树区间更新+离散化)

    题目分析:线段树区间更新+离散化 代码如下: # include<iostream> # include<cstdio> # include<queue> # in ...

  8. ZOJ 1610 Count the Colors (线段树区间更新)

    题目链接 题意 : 一根木棍,长8000,然后分别在不同的区间涂上不同的颜色,问你最后能够看到多少颜色,然后每个颜色有多少段,颜色大小从头到尾输出. 思路 :线段树区间更新一下,然后标记一下,最后从头 ...

  9. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

随机推荐

  1. C语言函数-strcat

    strcat: 将两个char类型连接. char d[20]="GoldenGlobal"; char *s="View"; strcat(d,s); 结果放 ...

  2. [USACO19FEB]Mowing Mischief

    题目大意: 给定平面上的一些点,求这些点的一个\(LIS\),并且还需要满足下列式子最小: \[ \sum_{i=1}^{n-1}(a[i+1].x-a[i].x)*(a[i+1].y-a[i].y) ...

  3. java并发编程 | 锁详解:AQS,Lock,ReentrantLock,ReentrantReadWriteLock

    原文:java并发编程 | 锁详解:AQS,Lock,ReentrantLock,ReentrantReadWriteLock 锁 锁是用来控制多个线程访问共享资源的方式,java中可以使用synch ...

  4. linux服务器显卡崩了怎么处理

    在登录界面出现分辨率特别大,整个图形界面特别大,并且怎么也登录不上去的情况时 对于这种情况,一般就是显卡驱动崩了的原因,所以我们可以首先检查显卡驱动是否有问题 nvidia -smi 如果出现说驱动链 ...

  5. Android studio Error: Modules no specified解决和真机调试

    如何配置SDK百度一大堆: 前言:Android Studio很完善,如果SDK配置好,理论上就是 创建项目->创建个APP(名字自己随便起)->打开手机开发者模式运行即可:如果出了问题, ...

  6. Mybatis插件机制以及PageHelper插件的原理

    首先现在已经有很多Mybatis源码分析的文章,之所以重复造轮子,只是为了督促自己更好的理解源码. 1.先看一段PageHelper拦截器的配置,在mybatis的配置文件<configurat ...

  7. flink-conf.yaml

    Flink 配置文件 对于管理员来说,差不多经常调整的就只有 conf 下的flink-conf.yaml : 经过初步的调整,大约有以下模块的参数(未优化) Licensed to the Apac ...

  8. Vue学习笔记一:初识Vue

    目录 什么是Vue? 为什么要学习前端框架? MVC,MVP 和 MVVM 最简单的入门小案例 下载Vue.js 新建文件结构 写一个html 运行 可笑的小报错 Vue和MVVM 什么是Vue? V ...

  9. [源码分析]StringBuilder

    [源码分析]StringBuilder StringBuilder是继承自AbstractStringBuilder的. 这里附上另外两篇文章的连接: AbstractStringBuilder :  ...

  10. 线程——自定义多线程task

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...