MyCat分片规则--笔记(二)
概述
myCat实现分库分表的策略,对数据量的处理带来很大的便利,这里主要整理下MyCat的使用以及常用路由算法,针对MyCat里面的事务、集群后续再做整理;另外内容整理,不免会参考技术大牛的博客,内容雷同,实属正常;基于业务区分数据源,主要为了实现如下的数据库

常规使用
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/"> <schema name="testdb" checkSQLschema="false" sqlMaxLimit="100” >
<!——指定rule 分片规则-->
<table name="user" dataNode="dn1,dn2,dn3" rule="sharding-by-intfile" />
</schema> <dataNode name="dn1" dataHost="host" database="testdb1" />
<dataNode name="dn2" dataHost="host" database="testdb2" />
<dataNode name="dn3" dataHost="host" database="testdb3" /> <dataHost name="host" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native">
<heartbeat>select 1</heartbeat>
<writeHost host="hostM1" url="localhost:3306" user="root" password="123" />
</dataHost> </mycat:schema>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mycat:server SYSTEM "server.dtd">
<mycat:server xmlns:mycat="http://io.mycat/">
<system>
<property name="defaultSqlParser">druidparser</property>
</system>
<user name="mycat">
<property name="password">mycat</property>
<property name="schemas">testdb</property>
</user>
</mycat:server>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mycat:rule SYSTEM "rule.dtd">
<mycat:rule xmlns:mycat="http://io.mycat/“>
<tableRule name="sharding-by-intfile">
<rule>
<columns>sharding_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule> <function name="hash-int"
class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
</function>
</mycat:rule>
常用的分片规则
一、枚举法
<tableRule name="sharding-by-intfile">
<rule>
<columns>user_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">0</property>
<property name="defaultNode">0</property>
</function>
这个是针对Int类型的枚举算法,如果是标识字符串枚举,可将function做如下调整: <property name="type">1</property>
partition-hash-int.txt 文件配置:
10000=0
10010=1
上面columns 标识将要分片的表字段,algorithm 分片函数,
其中分片函数配置中,mapFile标识配置文件名称,type默认值为0,0表示Integer,非零表示String,
所有的节点配置都是从0开始,及0代表节点1
/**
* defaultNode 默认节点:小于0表示不设置默认节点,大于等于0表示设置默认节点,结点为指定的值
*
默认节点的作用:枚举分片时,如果碰到不识别的枚举值,就让它路由到默认节点
* 如果不配置默认节点(defaultNode值小于0表示不配置默认节点),碰到
* 不识别的枚举值就会报错,
* like this:can't find datanode for sharding column:column_name val:ffffffff
*/
二、固定分片hash算法(总体长度1024)
<tableRule name="rule1">
<rule>
<columns>user_id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">2,1</property>
<property name="partitionLength">256,512</property>
</function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
partitionCount 分片个数列表,partitionLength 分片范围列表
分区长度:默认为最大2^n=1024 ,即最大支持1024分区
约束 :
count,length两个数组的长度必须是一致的。
1024 = sum((count[i]*length[i])). count和length两个向量的点积恒等于1024
用法例子:
@Test
public void testPartition() {
// 本例的分区策略:希望将数据水平分成3份,前两份各占25%,第三份占50%。(故本例非均匀分区)
// |<---------------------1024------------------------>|
// |<----256--->|<----256--->|<----------512---------->|
// | partition0 | partition1 | partition2 |
// | 共2份,故count[0]=2 | 共1份,故count[1]=1 |
int[] count = new int[] { 2, 1 };
int[] length = new int[] { 256, 512 };
PartitionUtil pu = new PartitionUtil(count, length);
// 下面代码演示分别以offerId字段或memberId字段根据上述分区策略拆分的分配结果
int DEFAULT_STR_HEAD_LEN = 8; // cobar默认会配置为此值
long offerId = 12345;
String memberId = "qiushuo";
// 若根据offerId分配,partNo1将等于0,即按照上述分区策略,offerId为12345时将会被分配到partition0中
int partNo1 = pu.partition(offerId);
// 若根据memberId分配,partNo2将等于2,即按照上述分区策略,memberId为qiushuo时将会被分到partition2中
int partNo2 = pu.partition(memberId, 0, DEFAULT_STR_HEAD_LEN);
Assert.assertEquals(0, partNo1);
Assert.assertEquals(2, partNo2);
}
如果需要平均分配设置:平均分为4分片,partitionCount*partitionLength=1024
<function name="func1" class="org.opencloudb.route.function.PartitionByLong">
<property name="partitionCount">4</property>
<property name="partitionLength">256</property>
</function>
三、范围约定
<tableRule name="auto-sharding-long">
<rule>
<columns>user_id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
</function>
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2
或
0-10000000=0
10000001-20000000=1
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
rang-long 函数中mapFile代表配置文件路径
所有的节点配置都是从0开始,及0代表节点1,此配置非常简单,即预先制定可能的id范围到某个分片
四、求模法
<tableRule name="mod-long">
<rule>
<columns>user_id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">3</property>
</function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
此种配置非常明确即根据id与count(你的结点数)进行求模预算,相比方式1,此种在批量插入时需要切换数据源,id不连续
五、日期列分区法
<tableRule name="sharding-by-date">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-date</algorithm>
</rule>
</tableRule>
<function name="sharding-by-date" class="io.mycat.route.function..PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2014-01-01</property>
<property name="sPartionDay">10</property>
</function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
配置中配置了开始日期,分区天数,即默认从开始日期算起,分隔10天一个分区
六、通配取模
<tableRule name="sharding-by-pattern">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-pattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPattern">
<property name="patternValue">256</property>
<property name="defaultNode">2</property>
<property name="mapFile">partition-pattern.txt</property>
</function>
partition-pattern.txt
# id partition range start-end ,data node index
###### first host configuration
1-32=0
33-64=1
65-96=2
97-128=3
######## second host configuration
129-160=4
161-192=5
193-224=6
225-256=7
0-0=7
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,defaoultNode 默认节点,如果不配置了默认,则默认是0即第一个结点
mapFile 配置文件路径
配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推,如果id非数字数据,则会分配在defaoultNode 默认节点
String idVal = "0";
Assert.assertEquals(true, 7 == autoPartition.calculate(idVal));
idVal = "45a";
Assert.assertEquals(true, 2 == autoPartition.calculate(idVal));
七、ASCII码求模通配
<tableRule name="sharding-by-prefixpattern">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-prefixpattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPrefixPattern">
<property name="patternValue">256</property>
<property name="prefixLength">5</property>
<property name="mapFile">partition-pattern.txt</property>
</function>
partition-pattern.txt
# range start-end ,data node index
# ASCII
# 48-57=0-9
# 64、65-90=@、A-Z
# 97-122=a-z
###### first host configuration
1-4=0
5-8=1
9-12=2
13-16=3
###### second host configuration
17-20=4
21-24=5
25-28=6
29-32=7
0-0=7
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,prefixLength ASCII 截取的位数
mapFile 配置文件路径
配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推
此种方式类似方式6只不过采取的是将列种获取前prefixLength位列所有ASCII码的和进行求模sum%patternValue ,获取的值,在通配范围内的
即 分片数,
/**
* ASCII编码:
* 48-57=0-9阿拉伯数字
* 64、65-90=@、A-Z
* 97-122=a-z
*/
如
String idVal="gf89f9a";
Assert.assertEquals(true, 0==autoPartition.calculate(idVal));
idVal="8df99a";
Assert.assertEquals(true, 4==autoPartition.calculate(idVal));
idVal="8dhdf99a";
Assert.assertEquals(true, 3==autoPartition.calculate(idVal));
八、其他分区:按月(12个月)和天分区(24区)
<function name="latestMonth"
class="io.mycat.route.function.LatestMonthPartion">
<property name="splitOneDay">24</property>
</function>
<function name="partbymonth"
class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2015-01-01</property>
</function>
尝试MyCat总结
1、MyCat宣称对Oracle数据库进行支持,但是也仅仅局限于常规的语句,对MyCat的链接驱动还是要mysql,一些常规的登录,转到Oracle语句就报错;如果想基于MyCat做分库分表机制,还是建议DB选择:mySQL
2、MyCat配置完整之后,数据表对接,都是小写的;如果应用框架(Spring-Oracle)采用Table名称大写查询操作,MyCat是没法予以支持;如果是(Spring-Mysql)框架模式,到时可以修改Mysql配置,不区分大写小属性完成;
MyCat分片规则--笔记(二)的更多相关文章
- mycat分片规则之分片枚举(sharding-by-intinfile)
mycat分片规则之分片枚举(sharding-by-intinfile) http://blog.51cto.com/goome/2058959 mycat安装及分片初体验 https://blog ...
- Mycat 分片规则详解--单月小时分片
实现方式:单月内按照小时拆分,最小粒度是小时,一天最多可以有24个分片,最少1个分片,下个月从头开始循环 优点:使数据按照小时来进行分时存储,颗粒度比日期(天)分片要小,适用于数据采集类存储分片 缺点 ...
- Mycat 分片规则详解--日期(天)分片
实现方式:按照日期来分片 优点:使数据按照日期来进行分时存储 缺点:由于数据是连续的,所以该方案不能有效的利用资源 配置示例: <tableRule name="sharding-by ...
- Mycat 分片规则详解--应用指定分片
实现方式:根据字符串的子串(必须是数字)计算分区号(由调用方传递参数,显示指定分区号),例如,id=05-12232323,其中 id 是从 startIndex = 0,size=2,即截取的子串是 ...
- Mycat 分片规则详解--取模分片
实现方式:切分规则根据配置中输入的数值n.此种分片规则将数据分成n份(通常dn节点也为n),从而将数据均匀的分布于各节点上. 优点:这种策略可以很好的分散数据库写的压力.比较适合于单点查询的情景 缺点 ...
- Mycat 分片规则详解--枚举分片
实现方式:切分规则根据文件(partition-hash-int.txt)配置的可能的枚举来进行分片,此种分片规则理解为枚举分区,会比较适合于取值固定的场合,比如说省份(固定值) 优点:适用于按照省份 ...
- mycat系列-Mycat 分片规则
分片规则概述 在数据切分处理中,特别是水平切分中,中间件最终要的两个处理过程就是数据的切分.数据的聚合.选择合适的切分规则,至关重要,因为它决定了后续数据聚合的难易程度,甚至可以避免跨库的数据聚合处理 ...
- Mycat分片规则详解
1.分片枚举 通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则,配置如下: <tab ...
- Mycat 分片规则详解--数据迁移及节点扩容
使用的是 Mycat 提供的 dataMigrate 脚本进行对数据进行迁移和节点扩容,目前支持的 Mycat 是1.6 版本,由于 Mycat 是由 Java 编写的因此在做数据迁移及节点扩容时需要 ...
随机推荐
- 集合源码分析[2]-AbstractList 源码分析
AbstractList 类型:抽象类 接口的继承以及实现关系 继承AbstractCollection 实现List接口 典型方法实现解析 public List<E> subList( ...
- MongoDB官网配置项目整理
MongoDB的配置文件共有10个项目: systemLog:processManagement:net:security:storage:operationProfiling:replication ...
- 3-ftp搭建成功,服务器能访问,外网无法连接和访问
登录 ECS 管理控制台,找到相应的实例. 在实例的右侧单击管理,进入实例详情页面.选择本实例安全组. 在安全组列表页面,找到相应的安全组,单击配置规则. 在安全组规则页面,单击添加安全组规则. 在添 ...
- 分析web.xml
<?xml version="1.0" encoding="UTF-8"?> //xml的版本:1.0 和 编码:utf-8 <web-ap ...
- POJ1179Polygon(区间dp)
啊~~ 被dp摁在地上摩擦的人 今天做了一道区间dp的题(POJ1179Polygon) 题目: Polygon Time Limit: 1000MS Memory Limit: 10000K T ...
- TF Multi-GPU single input queue
多GPU的数据训练,feed images, labels = cifar10.distorted_inputs() split_images = tf.split(images, FLAGS.num ...
- Gradle创建项目(IntelliJ IDEA)
创建Gradle项目 步骤一: 步骤二: 步骤三: 步骤四: 步骤五: 此时, 项目已经建好, 如果是第一次使用, 或者本地没有该版本的Gradle时, 就会触发下载.如图所示. 点击红色方框中标识的 ...
- springboot springmvc拦截器 拦截POST、PUT、DELETE请求参数和响应数据,并记录操作日志
1.操作日志实体类 @Document(collection = "operation_log") @Getter @Setter @ToString public class O ...
- Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree (树形dp)
题目链接 题意:给你一个有根树,假设有k个叶子节点,你可以给每个叶子节点编个号,要求编号不重复且在1-k以内.然后根据节点的max,minmax,minmax,min信息更新节点的值,要求根节点的值最 ...
- 同一台电脑同时装jdk1.8和jdk1.7
因为之前安装的eclipse版本要求JDK1.8或以上的版本,但在搭建SSH框架的时候老是报错,又找不到2错误源.老师建议换个低版本的jdk.所以jdk版本需要降级. 但降级以后就不能打开eclips ...