<题目链接>

题目大意:

给定一个数n,代表有一个0~n-1的完全图,该图中所有边的边权为两端点的异或值,求这个图的MST的值。

解题分析:

数据较大,$10^{12}$个点的完全图,然后异或又暂时推不出什么性质,所以先起手Kruskal打一张小数据完全图的MST的表,发现规律其实还是蛮好找的。

#include <bits/stdc++.h>

using namespace std;

const int N = 1e5+;

int fa[N],cnt,ncase;
struct Edge{ int u,v,w;
bool operator < (const Edge &tmp)const{
return w<tmp.w;
}
}e[N];
map<int,int>mpa;
inline void add(int u,int v,int w){
e[++cnt]=(Edge){u,v,w};
}
inline int find(int &x){
while(x!=fa[x])
x=fa[x]=fa[fa[x]];
}
inline void Kruskal(){
sort(e+,e++cnt);
for(int i=;i<=cnt;i++){
int u=e[i].u,v=e[i].v;
find(u);find(v);
if(u!=v){
fa[v]=u;
printf("%dth edge , w=%d\n",++ncase,e[i].w);
mpa[e[i].w]++;
}
}
for(auto i:mpa){
printf("%d have %d (num)\n",i.first,i.second);
}
}
int main(){
int n;cin>>n;
ncase=;
for(int i=;i<n;i++)fa[i]=i;
for(int i=;i<n;i++){
for(int j=i+;j<n;j++){
add(i,j,i^j);
}
}
Kruskal();
}

打表

然后根据规律就可以快速求解了。

#include <bits/stdc++.h>
using namespace std; typedef long long ll; int main(){
ll n,ans,w=;
scanf("%lld",&n);
while(n>){
ans+=w*(n>>); //(n>>1)代表边数,w代表权值
w<<=;
n-=n>>;
}
cout<<ans<<endl;
}

CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)的更多相关文章

  1. Codeforces 959E. Mahmoud and Ehab and the xor-MST 思路:找规律题,时间复杂度O(log(n))

    题目: 解题思路 这题就是0,1,2...n-1总共n个数字形成的最小生成树. 我们可以发现,一个数字k与比它小的数字形成的异或值,一定可以取到k与所有正整数形成的异或值的最小值. 要计算n个数字的情 ...

  2. Codeforces 862C - Mahmoud and Ehab and the xor

    862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...

  3. # E. Mahmoud and Ehab and the xor-MST dp/数学+找规律+xor

    E. Mahmoud and Ehab and the xor-MST dp/数学/找规律 题意 给出一个完全图的阶数n(1e18),点由0---n-1编号,边的权则为编号间的异或,问最小生成树是多少 ...

  4. CodeForces - 862C Mahmoud and Ehab and the xor(构造)【异或】

    <题目链接> 题目大意: 给出n.m,现在需要你输出任意n个不相同的数(n,m<1e5),使他们的异或结果为m,如果不存在n个不相同的数异或结果为m,则输出"NO" ...

  5. Codeforces.959E.Mahmoud and Ehab and the xor-MST(思路)

    题目链接 \(Description\) 有一张\(n\)个点的完全图,从\(0\)到\(n-1\)标号,每两点\(i,j\)间的边权为\(i\oplus j\).求其最小生成树边权之和. \(Sol ...

  6. CodeForces - 862C Mahmoud and Ehab and the xor(构造)

    题意:要求构造一个n个数的序列,要求n个数互不相同,且异或结果为x. 分析: 1.因为0 ^ 1 ^ 2 ^ 3 ^ ... ^ (n - 3) ^ (n - 2) ^ (0 ^ 1 ^ 2 ^ 3 ...

  7. Coderfroces 862 C. Mahmoud and Ehab and the xor

    C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...

  8. Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)

    Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...

  9. Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)

    Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...

随机推荐

  1. 用Pytorch训练线性回归模型

    假定我们要拟合的线性方程是:\(y=2x+1\) \(x\):[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] \(y\):[1, 3, 5, 7, ...

  2. mysql 重启,修改编码utf8mb4,并修改数据库链接,生效

    1.启动:/etc/init.d/mysql start 2.停止:/etc/init.d/mysql stop 3.重启:/etc/init.d/mysql restart SHOW VARIABL ...

  3. (BFS) leetcode 279. Perfect Squares

    Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...

  4. Gaussian Process for Regression

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

  5. Flask Web中文教程

    Flask Web中文教程:http://docs.jinkan.org/docs/flask/

  6. SpringBoot系列: Pebble模板引擎

    ===============================Java 模板引擎选择===============================SpringBoot Starter项目向导中可选的J ...

  7. 关于MySql经典高频查询语句的整理

    一查询数值型数据: SELECT * FROM tb_name WHERE sum > 100; 查询谓词:>,=,<,<>,!=,!>,!<,=>,= ...

  8. Codeforces Round #449 (Div. 2) D. Ithea Plays With Chtholly

    题目链接 交互题. 题意:给你三个数n,m,k.让你完成至多m次互动,每次给你一个q,让你从n个位置选一个位置放这个数,覆盖已经放过的数.让你再m次使得n个位置的数不递减,达到直接退出. 解法:暴力, ...

  9. 4.Centos7安装JDK8以及环境配置

    1.下载 linux 版本 jdk (jdk-8u11-linux-x64.tar.gz) 一定要是 .tar.gz 版本,可以去我的百度网盘下载或者在百度上面找 2.新建文件夹命令:mkdir /u ...

  10. git切换到新的远程地址

    查看仓库链接 git remote -v 修改url链接 git remote set-url origin URL