TensorFlow运行方式。加载数据、定义超参数,构建网络,训练模型,评估模型、预测。

构造一个满足一元二次函数y=ax^2+b原始数据,构建最简单神经网络,包含输入层、隐藏层、输出层。TensorFlow学习隐藏层、输出层weights、biases。观察训练次数增加,损失值变化。

生成、加载数据。方程y=x^2-0.5。构造满足方程的x、y。加入不满足方程噪声点。

import tensor flow as tf
import bumpy as np
# 构造满中一元二次方程的函数
x_data = np.linspace(-1,1,300)[:,np.newaxis] # 构建起300个点,分布在-1到1区间,用np生成等差数列,300个点的一维数组转换为300x1的二维数组
noise = np.random.normal(0, 0.05, x_data.shape) # 加入噪声点,与x_data维度一致,拟合均值0、方差0.05正态分布
y_data = np.square(x_data) - 0.5 + noise # y = x^2 - 0.5 + 噪声

定义x、y占位符作输入神经网络变量。

xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

构建网络模型。

构建一个隐藏层,一个输出层。输入参数4个变量,输入数据、输入数据维度、输出数据维度、激活函数。每层向量化处理(y = weights*x +biases),激活函数非线性化处理,输出数据。定义隐藏层、输出层:

def add_layer(inputs, in_size, out_size, activation_function=None):
# 构建权重:in_size*out_size 大小的矩阵
weights = tf.Variable(tf.random_normal([in_size, out_size]))
# 构建偏置:1 * out_size矩阵
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
# 矩阵相乘
Wx_plus_b = tf.matmul(inputs, weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs #得到输出数据
# 构建隐藏层,假设隐藏层有10个神经元
h1 = add_layer(xs, 1, 20, activation_function=tf.nn.relu)
# 构建输出层,假设输出层和输入层一样,有1个神经元
prediction = add_layer(h1, 20, 1, activation_function=None)

构建损失函数,计算输出层预测值、真实值间误差。二者差的平方求和再取平均。梯度下降法,以0.1效率最小化损失。

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

训练模型。训练1000次,每50次输出训练损失值。

init = tf.global_variables_initializer() # 初始化所有变量
sess = tf.Session()
sess.run(init)

for i in range(1000): # 训练1000次
sess.run(train_step, feed_dict = (xs: x_data, ys: y_data)
if i % 50 == 0: #每50次打印出一次损失值
print(sets.run(loss, feed_dict={xs: x_data, ys: y_data}))

训练权重值,模型拟合y = x^2-0.5的系数1和-0.5。损失值越来越小,训练参数越来越逼近目标结果。评估模型,学习系数weights、biase前向传播后和真值y = x^2-0.5结果系数比较,根据相近程度计算准确率。

超参数设定。hyper-parameters,机器学习模型框架参数。手动设定、不断试错。

学习率(learning rate),设置越大,训练时间越短,速度越快。设置越小,训练准确度越高。可变学习率,训练过程记录最桂准确率,连续n轮(epoch)没达到最佳准确率,认为准确率不再提高,停止训练,early stopping,no_improvement-in-n规则。学习率减半,再满足时再减半。逐渐接近最优解,学习率越小,准确度越高。

mini-batch大小。每批大小决定权重更新规则。整批样本梯度全部计算完,才求平均值,更新权重。批次越大训练速度越快,利用矩阵、线性代数库加速,权重更新频率低。批次越小,训练速度越慢。结合机器硬件性能与数据集大小设定。

正则项系数(regularization parameter,λ)。凭经验。复杂网络出现明显过拟合(训练数据准确率高,测试数据准确率下降)。一开始设0,确定好学习率,再给λ设值,根据准确率精细调整。

参考资料:
《TensorFlow技术解析与实战》

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

学习笔记TF055:TensorFlow神经网络简单实现一元二次函数的更多相关文章

  1. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  2. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  3. [转载]SharePoint 2013搜索学习笔记之搜索构架简单概述

    Sharepoint搜索引擎主要由6种组件构成,他们分别是爬网组件,内容处理组件,分析处理组件,索引组件,查询处理组件,搜索管理组件.可以将这6种组件分别部署到Sharepoint场内的多个服务器上, ...

  4. OGG学习笔记03-单向复制简单故障处理

    OGG学习笔记03-单向复制简单故障处理 环境:参考:OGG学习笔记02-单向复制配置实例 实验目的:了解OGG简单故障的基本处理思路. 1. 故障现象 故障现象:启动OGG源端的extract进程, ...

  5. QML学习笔记(六)- 简单计时器和定时器

    做一个简单的qml计时器和定时器,左键触发计时,右键触发定时 GitHub:八至 作者:狐狸家的鱼 本文链接:QML学习笔记(六)- 简单计时器和定时器 左键点击按钮,触发计时器,中键可以暂停计时,同 ...

  6. CNN学习笔记:卷积神经网络

    CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...

  7. [DL学习笔记]从人工神经网络到卷积神经网络_3_使用tensorflow搭建CNN来分类not_MNIST数据(有一些问题)

    3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道 ...

  8. [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法

    前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...

  9. 学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

    TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology ...

随机推荐

  1. Visual C++没事别启用/Za编译选项

    Visual C++对于C++标准的支持不是很完善好像是钦定了的.MS还特意在这里说了些非标准行为[1]以及扩展行为[2].这就不可避免地会让处女座程序猿感到难受(我不是处女座).所以,经过一番goo ...

  2. python学习笔记:1.初识python

    4.26 今日内容大纲 1.初识计算机.CPU 内存 硬盘 2.python初识 3.python发展史以及影响 4.python的分类 5.python的种类 6.变量 7.常量 8.注释 9.基础 ...

  3. hive表分区操作

    1.修复表分区命令 msck repair table table_name; 2.添加表分区操作 alter table table_name add partition(month_id='201 ...

  4. Bootstrap 总结

     Bootstrap 首先要引入下面三个文件   <!-- 新 Bootstrap 核心 CSS 文件 --> <link href="https://cdn.bootcs ...

  5. Qt的类:qfileinfogatherer

    这篇文章中,探索Qt中的类qfileinfogatherer类,先给出私有类头文件.我们先想一想要形成一个信息采集者,需要什么?需要一个线程,当文件信息发生变化的时候,作为一个槽来接收信号. 先预备一 ...

  6. Linux CentOS 7 下的C++ 学习笔记01

    1.虚拟机WMware 通过镜像安装CentOS 7系统(自行百度操作 虚拟机+镜像+安装一套都有) //安装时需要配置网络 //root设置密码   即为登录系统的账号和密码 2. C++ 环境设置 ...

  7. 《贝贝GO》服务条款

    服务条款 一.服务条款的确认与接收 1.贝贝GO客户端软件(以下简称“本软件”)各项电子服务的所有权和运作权归属于“东莞市山水信息技术有限公司”(以下称“本公司”)所有,本软件提供的服务将完全按照其发 ...

  8. Python 内编写类的各种技巧和方法

    Python 内编写类的各种技巧和方法 简介 有关 Python 内编写类的各种技巧和方法(构建和初始化.重载操作符.类描述.属性访问控制.自定义序列.反射机制.可调用对象.上下文管理.构建描述符对象 ...

  9. Sonar 平台搭建及 Sonar 自定义规则打包部署篇

    引言 基于阿里开发手册的sonar自定义插件工程 开源地址: https://github.com/tigerge000/sonar-java-custom-rules.git由于最近来问童鞋,就算写 ...

  10. JavaSpcript基础

    函数 代码的复用:写一遍多次使用>把特定的功能语句打包放在一起 语法:function 名字(0,1,1多个参数){ 执行的语句 } 返回值return,把语句返回给函数 例子: functio ...