传送门

要求的东西带个根号,这玩意叫几何平均数,说到平均数,我们就能想到算术平均数(就是一般意义下的平均数),而这个东西是一堆数之积开根号,所以如果每个数取对数,那么乘法会变成加法,开根号变成除法,所以我们只要最大化\(\frac{\sum_i ln_{a_i}}{c}\)就行了

这是一个分数规划的形式,首先二分最终答案\(mid\),然后我们要求最大答案,所以要检查\(\frac{\sum_i ln_{a_i}}{c}\)是否可以\(\ge mid\),可以改成$$\sum_i ln_{a_i}\ge mid*c$$$$\sum_i ln_{a_i}-mid\ge 0$$

所以出现一个串,权值加上\(ln_{a_i}-mid\),并且这是多个串在一个串上匹配,所以可以建出AC自动机后dp,设\(f_{i,j}\),表示放完前\(i\)个字符,在自动机的\(j\)处的最大权值,转移枚举下一位放什么转移(如果下一位确定就只能用那个字符),每到一个点就加上这个点权值,这个点权值为这个点以及跳\(fail\)能到的点的\(\sum ln_{a_i}-mid\).转移时顺便记录从哪转移,就可以倒序输出方案了

实现优秀的话\(eps\)可以开到\(1e-3\)

// luogu-judger-enable-o2
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db double using namespace std;
const int N=1500+10;
const db eps=1e-3;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
char cc[N],ss[N],an[N];
db ma,a[N],nm[N],f[N][N];
int n,m,ch[N][10],fl[N],tt,pr[N][N][2];
void inst()
{
scanf("%s",ss+1);
int len=strlen(ss+1),x=0;
db va=log(rd());
ma=max(ma,va);
for(int i=1;i<=len;++i)
{
if(!ch[x][ss[i]-'0']) ch[x][ss[i]-'0']=++tt;
x=ch[x][ss[i]-'0'];
}
a[x]+=va,++nm[x];
}
void bui()
{
queue<int> q;
for(int i=0;i<10;++i)
if(ch[0][i]) q.push(ch[0][i]);
while(!q.empty())
{
int x=q.front();
q.pop();
a[x]+=a[fl[x]],nm[x]+=nm[fl[x]];
for(int i=0;i<10;++i)
{
if(ch[x][i]) fl[ch[x][i]]=ch[fl[x]][i],q.push(ch[x][i]);
else ch[x][i]=ch[fl[x]][i];
}
}
}
void print(int x,int j)
{
if(!x) return;
an[x]=pr[x][j][1]+'0',print(x-1,pr[x][j][0]);
} int main()
{
n=rd(),m=rd();
scanf("%s",cc+1);
while(m--) inst();
bui();
for(int i=1;i<=tt;++i) f[0][i]=-1e9;
db l=0,r=ma;
while(r-l>eps)
{
db mid=(l+r)/2;
for(int i=1;i<=n;++i)
{
for(int j=0;j<=tt;++j) f[i][j]=-1e9;
for(int j=0;j<=tt;++j)
{
if(fabs(f[i-1][j]-1e9)<1) continue;
int st=0,en=9;
if(cc[i]>='0'&&cc[i]<='9') st=en=cc[i]-'0';
for(int k=st;k<=en;++k)
{
int nt=ch[j][k];
if(f[i][nt]<f[i-1][j]+a[nt]-nm[nt]*mid)
f[i][nt]=f[i-1][j]+a[nt]-nm[nt]*mid,pr[i][nt][0]=j,pr[i][nt][1]=k;
}
}
}
int jj=0;
db mx=f[n][0];
for(int j=1;j<=tt;++j)
if(mx<f[n][j]) mx=f[n][j],jj=j;
if(mx>eps)
{
print(n,jj);
l=mid+eps;
}
else r=mid-eps;
}
for(int i=1;i<=n;++i) putchar(an[i]);
return 0;
}

luogu P5319 [BJOI2019]奥术神杖的更多相关文章

  1. 【题解】Luogu P5319 [BJOI2019]奥术神杖

    原题传送门 题目让我们最大化\(val=\sqrt[k]{\prod_{i=1}^k w_i}\),其中\(k\)是咒语的个数,\(w_i\)是第\(i\)个咒语的神力 看着根号和累乘不爽,我们两边同 ...

  2. luoguP5319 [BJOI2019]奥术神杖(分数规划,AC自动机DP)

    luoguP5319 [BJOI2019]奥术神杖(分数规划,AC自动机DP) Luogu 题解时间 难点在于式子转化,设有c个满足的子串,即求最大的 $ ans = \sqrt[c]{\prod_{ ...

  3. [BJOI2019]奥术神杖(分数规划,动态规划,AC自动机)

    [BJOI2019]奥术神杖(分数规划,动态规划,AC自动机) 题面 洛谷 题解 首先乘法取\(log\)变加法,开\(c\)次根变成除\(c\). 于是问题等价于最大化\(\displaystyle ...

  4. [BJOI2019]奥术神杖——AC自动机+DP+分数规划+二分答案

    题目链接: [BJOI2019]奥术神杖 答案是$ans=\sqrt[c]{\prod_{i=1}^{c}v_{i}}=(\prod_{i=1}^{c}v_{i})^{\frac{1}{c}}$. 这 ...

  5. [BJOI2019]奥术神杖

    https://www.luogu.org/problemnew/show/P5319 题解 首先观察我们要求的答案的形式: \[ \biggl(\prod V_i \biggr)^x\ \ \ x= ...

  6. [BJOI2019]奥术神杖(分数规划+AC自动机+DP)

    题解:很显然可以对权值取对数,然后把几何平均值转为算术平均值,然后很显然是分数规划.先对每个模式串建立AC自动机,每个节点w[i],sz[i]分别表示以其为前缀的字符串,然后再二分最优解k,然后w[i ...

  7. #loj3089 [BJOI2019]奥术神杖

    卡精度好题 最关键的一步是几何平均数的\(ln\)等于所有数字取\(ln\)后的算术平均值 那么现在就变成了一个很裸的01分数规划问题,一个通用的思路就是二分答案 现在来考虑二分答案的底层怎么写 把所 ...

  8. [BJOI2019]奥术神杖(AC自动机,DP,分数规划)

    题目大意: 给出一个长度 $n$ 的字符串 $T$,只由数字和点组成.你可以把每个点替换成一个任意的数字.再给出 $m$ 个数字串 $S_i$,第 $i$ 个权值为 $t_i$. 对于一个替换方案,这 ...

  9. [BJOI2019] 奥术神杖 [取log+AC自动机+dp]

    题面 传送门 思路 首先,看到这个乘起来开根号的形式,应该能想到用取$\log$的方式做一个转化: $\sqrt[n]{\prod_i a_i}=\frac{1}{n}\sum_i \log_b a_ ...

随机推荐

  1. scrapy formRequest 表单提交

    scrapy.FormRequest 主要用于提交表单数据 先来看一下源码 参数: formdata  (dict or iterable of tuples) – is a dictionary ( ...

  2. weblogic补丁下载与安装补丁的方法

    文章目录1.根据漏洞报告下载补丁2.补丁包上传解压到Linux3.关于OPatch4.安装补丁4.1单个补丁安装4.2查看已安装的补丁4.3多个补丁安装4.4单个补丁回滚4.5多个补丁回滚4.6验证补 ...

  3. MUI版本升级更新程序IOS和andriod

    var wgtVer=null; function plusReady(){ // 获取本地应用资源版本号 plus.runtime.getProperty(plus.runtime.appid,fu ...

  4. selenium3(java)之屏幕截图操作

    selenium提供了截图的功能,分别是接口是TakesScreenshot和类RemoteWebDriver.该功能是在运行测试用例的过程中,需要验证某个元素的状态或者显示的数值时,可以将屏幕截取下 ...

  5. 关于php中 json_encode 编码成json数据参数说明

    JSON_UNESCAPED_SLASHES   编码不要转义符 \ 反斜杠 JSON_UNESCAPED_UNICODE   编码不转义成 unicode 字符串 如果如果多个参数可以用 | 隔开添 ...

  6. 移除 iview的Table组件固定两头后box-shadow阴影效果

    .ivu-table-fixed{ box-shadow:0 0 0 #fff; }

  7. keras02 - hello convolution neural network 搭建第一个卷积神经网络

    本项目参考: https://www.bilibili.com/video/av31500120?t=4657 训练代码 # coding: utf-8 # Learning from Mofan a ...

  8. JS中让新手倍感震惊、违反直觉、出乎意料、的一些知识点汇总记录

    本文记录在自己学习js过程中,违反直觉,出乎意料,倍感震惊的知识点.当然,不了解这个知识点,很容易出错,因为毕竟违反直觉,出乎意料,倍感震惊嘛! 1. 两个内容一样的数组竟然不相等? var a = ...

  9. Centos7下安装和配置vim

    Centos7 最新版本默认已经安装vim,可以使用命令查看是否安装 rpm -qa|grep vim 输出结果如下,如无以下输出结果,则安装vim: vim-filesystem-7.4.160-4 ...

  10. Capability配置简介

    什么是Capability desired capability的功能是配置Appium会话.他们告诉Appium服务器您想要自动化的平台和应用程序. Desired Capabilities是一组设 ...