LCA(ST倍增)
时间复杂度:
dfs树,求st表(状态数组f):O(NlgN)
处理M个查询:O(MlgN)
总:O((M+N)lgN)
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=500010;
struct edge{ int t; edge * nxt; edge(int to, edge * next){ t=to, nxt=next; } };
edge * h[maxn];
void add(int u, int v) { h[u]=new edge(v, h[u]); }
int N, M, S, fa[maxn], L[maxn], f[maxn][20]; //S为根节点,fa为父亲数组,L记录结点深度,f为状态数组
inline int read(){
int s=0, w=1; char ch=getchar();
while(ch<'0' || ch>'9' ){ if(ch=='-') w=-1; ch=getchar(); }
while(ch>='0' && ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*w;
}
void dfs(int x){ //在dfs过程中计算出每个节点的深度L、father
L[x]=L[fa[x]]+1;
f[x][0]=fa[x];
for(int i=1; (1<<i)<=L[x]; i++) //使用倍增思想[ST]计算出当前结点的2^i代祖先
f[x][i]=f[f[x][i-1]][i-1];
for(edge * p=h[x]; p; p=p->nxt){
if(p->t==fa[x]) continue;
fa[p->t]=x;
dfs(p->t);
}
}
// void prep(){ //这是另一种形式dp计算所有节点的2^k祖宗
// int max_k=log(N)/log(2);
// for(int i=1; i<=N; i++) //依赖于dfs得到的fa数组作为初始状态
// f[i][0]=fa[i];
// for(int k=1; k<max_k; k++){ //状态转移的时间复杂度为O(NlgN)
// for(int i=1; i<=N; i++){
// if((L[i]-(1<<k))>0)
// f[i][k]=f[f[i][k-1]][k-1]; //但倍增计算放在dfs里面是最巧妙、高效的
// }
// }
// }
int lca(int x, int y){
if(x==y) return x; //!!!!!!!!!!!!!非常重要,不用解释!!!!!!!!!!
if(L[x]<L[y]) swap(x, y); //如果x比y浅,交换,使得x比y深
int t=log(L[x]-L[y])/log(2); //计算x,y相差的层数,x最大可以向上跳2^t层
for(int i=t; i>=0; i--){ //从x位置以二进制的方式向上跳
if(L[f[x][i]]>=L[y]) x=f[x][i];
if(x==y) return x;
}
t=log(L[x])/log(2); //距离树根,最多可以向上跳2^t层
for(int i=t; i>=0; i--) //从x, y位置以二进制的方式一同向上跳
if(f[x][i]!=f[y][i]) x=f[x][i], y=f[y][i]; //father不一样,继续跳
return f[x][0];
}
int main(){
N=read(); M=read(); S=read();
for(int i=1, x, y; i<N; i++) { x=read(); y=read(); add(x, y); add(y, x); }
dfs(S);
for(int i=1, a, b; i<=M; i++) { a=read(); b=read(); printf("%d\n", lca(a, b)); }
return 0;
}
LCA(ST倍增)的更多相关文章
- 关于LCA的倍增解法的笔记
emmmmm近日刚刚学习了LCA的倍增做法,写一篇BLOG来加强一下印象w 首先 何为LCA? LCA“光辉”是印度斯坦航空公司(HAL)为满足印度空军需要研制的单座单发轻型全天候超音速战斗攻击机,主 ...
- 51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径
51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径 题面 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即 ...
- LCA的倍增算法
LCA,即树上两点之间的公共祖先,求这样一个公共祖先有很多种方法: 暴力向上:O(n) 每次将深度大的点往上移动,直至二者相遇 树剖:O(logn) 在O(2n)预处理重链之后,每次就将深度大的沿重链 ...
- [模板]LCA的倍增求法解析
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- ST&倍增LCA
回顾st算法,它的一大功能是求区间最值.先将整个区间划分成若干个小的区间,求出最值,然后将小的区间合并成一个大的区间,我们这里要用到一个数组minn[i][j],划重点!如果我们要求的是区间最小值,m ...
- [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]
参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...
- 关于树论【LCA树上倍增算法】
补了一发LCA,表示这东西表面上好像简单,但是细节真挺多. 我学的是树上倍增,倍增思想很有趣~~(爸爸的爸爸叫奶奶.偶不,爷爷)有一个跟st表非常类似的东西,f[i][j]表示j的第2^i的祖先,就是 ...
- Codevs 2370 小机房的树 LCA 树上倍增
题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子, ...
- LCA算法倍增算法(洛谷3379模板题)
倍增(爬树)算法,刚刚学习的算法.对每一个点的父节点,就记录他的2k的父亲. 题目为http://www.luogu.org/problem/show?pid=3379 第一步先记录每一个节点的深度用 ...
随机推荐
- Redis可视化工具 Redis Desktop Manager
1.前言 从接触Redis也有两年,平时就使用它来做缓存层,它给我的印象就是很强大,内置的数据结构很齐全,加上Redis5.0的到来,新增了很多特色功能.而Redis5.0最大的新特性就是多出了一个数 ...
- JavaScript -- 原型:prototype的使用
JavaScript -- 原型:prototype的使用 在 JavaScript 中,prototype 是函数的一个属性,同时也是由构造函数创建的对象的一个属性. 函数的原型为对象. 它主要在函 ...
- Scrapy案例01-爬取传智播客主页上的老师信息
目录 1. 新建scrapy项目 2. 爬虫文件: 2.1. 查看需要爬取内容存在哪里: 2.2. 设置item需要保存的数据变量 2.3. 创建爬虫文件 2.4. 保存数据 2.5. yield的用 ...
- git-将dev代码合并到test
1. 在dev分支上刚开发完项目,执行以下命令: git add git commit -m 'dev' git push -u origin dev 2.切换到test分支上 如果是多人开发,先把远 ...
- OCR技术浅析-自写篇(2)
本例仅以本人浅薄理解,妄想自制文字识别程序,实际在识别部分未有完善. <?php class readChar{ private $imgSize; //图片尺寸 private $imgGd2 ...
- Flask 快速使用 进阶—— (2)
案例:可配置发送信息的系统 假如我们有这样的一个系统,可以发送短息,邮件和微信,后期可能还会增加一些平台,怎么才可以做到快速切换的去使用某种功能呢,在这里我会通过在配置文件中简单的配置就可以实现 在项 ...
- vue.js实战——计算属性
1set和get: 注意: this.lastName=names[names.length-1];//解决连续输入空格后lastName消失的问题 练习代码如下: <!DOCTYPE html ...
- 深度学习之前期准备工作--python,pip,numpy,tensorflow安装
1.下载并安装python https://www.python.org/downloads/windows/ 推荐3.6.5版本 2.激活pip 1.>因为python3.4之后都自带了pip ...
- kubernetes-DNS解析很慢或者超时的问题
DNS的解析结构: <service_name>.<namespace>.svc.<domain> myapp.default.svc.cluster.local ...
- 第六十五天 js操作
1.闭包 // 函数的嵌套定义,定义在内部的函数都称之为 闭包 // 1.一个函数要使用另一个函数的局部变量 // 2.闭包会持久化包裹自身的函数的局部变量 // 3.解决循环绑定 function ...