试证明: 如果质量力有势, 即存在 $\phi$ 使 ${\bf F}=-\n \phi$, 那么理想流体的能量守恒方程的微分形式可写为 $$\bex \cfrac{\rd}{\rd t}\sex{e+\cfrac{u^2}{}+\cfrac{p}{\rho}+\phi} =\cfrac{1}{\rho}\cfrac{\p p}{\p t}+\cfrac{\p \phi}{\p t}. \eex$$

证明: 由 (1. 21), $$\bex \cfrac{\rd }{\rd t}\sex{e+\cfrac{u^2}{2}} +\cfrac{1}{\rho }[p\Div{\bf u}+({\bf u}\cdot\n)p]=-({\bf u}\cdot\n)\phi, \eex$$ 而又 $$\beex \bea \cfrac{1}{\rho}[p\Div{\bf u}+({\bf u}\cdot\n)p] &=\cfrac{p}{\rho^2}\sez{-\cfrac{\rd \rho}{\rd t}} +\cfrac{1}{\rho}\sex{\cfrac{\rd p}{\rd t}-\cfrac{\p t}{\p t}}\\ &=p\cfrac{\rd }{\rd t}\cfrac{1}{\rho} +\cfrac{1}{\rho}\cfrac{\rd p}{\rd t} -\cfrac{1}{\rho}\cfrac{\p p}{\p t}\\ &=\cfrac{\rd }{\rd t}\cfrac{p}{\rho} -\cfrac{1}{\rho}\cfrac{\p p}{\p t},\\ -({\bf u}\cdot\n)\phi&=-\cfrac{\rd\phi}{\rd t}+\cfrac{\p \phi}{\p t}, \eea \eeex$$ 我们有 $$\bex \cfrac{\rd}{\rd t}\sex{e+\cfrac{u^2}{2}+\cfrac{p}{\rho}+\phi} =\cfrac{1}{\rho}\cfrac{\p p}{\p t}+\cfrac{\p \phi}{\p t}. \eex$$

[物理学与PDEs]第2章习题2 质量力有势时的能量方程的更多相关文章

  1. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  2. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  3. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  4. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  5. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  6. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

  7. [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

    设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...

  8. [物理学与PDEs]第1章习题5 偶极子的电场强度

    试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...

  9. [物理学与PDEs]第5章习题10 多凸函数一个例子

    证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...

随机推荐

  1. How-to: Do Real-Time Log Analytics with Apache Kafka, Cloudera Search, and Hue

    Cloudera recently announced formal support for Apache Kafka. This simple use case illustrates how to ...

  2. 从PyMongo看MongoDB Read Preference

      在CAP理论与MongoDB一致性.可用性的一些思考一文中提到,MongoDB提供了一些选项,如Read Preference.Read Concern.Write Concern,对MongoD ...

  3. Golang 入门系列(三)Go语言基础知识汇总

    前面已经了 Go 环境的配置和初学Go时,容易遇到的坑,大家可以请查看前面的文章 https://www.cnblogs.com/zhangweizhong/category/1275863.html ...

  4. C++ 标准库之 iomanip 、操作符 ios::fixed 以及 setprecision 使用的惨痛教训经验总结

    本菜鸡自从退役之后就再也没怎么敲过 C++ 代码,在 C++ 语言下,求解关于浮点数类型的问题时,之前有碰到类似的情况,但是似乎都没有卡这块的数据,基本上用一个 setprecision 函数保留几位 ...

  5. Django rest framework 源码分析 (1)----认证

    一.基础 django 2.0官方文档 https://docs.djangoproject.com/en/2.0/ 安装 pip3 install djangorestframework 假如我们想 ...

  6. RBAC权限管理模型 产品经理 设计

    RBAC权限管理模型:基本模型及角色模型解析及举例 | 人人都是产品经理http://www.woshipm.com/pd/440765.html RBAC权限管理 - PainsOnline的专栏 ...

  7. vue.js实战——$event

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. c语言第三次课

    一.const的使用1)const声明变量为只读 ; a = ; //error ] = "abcdef"; const char *p = buf; char const *p ...

  9. /usr/bin/ld: .build_release/tools/alignment_tools.o: undefined reference to symbol 'omp_get_thread_num@@OMP_1.0'

    问题:/usr/bin/ld: .build_release/tools/alignment_tools.o: undefined reference to symbol 'omp_get_threa ...

  10. 【XSY2843】「地底蔷薇」 NTT什么的 扩展拉格朗日反演

    题目大意 给定集合\(S\),请你求出\(n\)个点的"所有极大点双连通分量的大小都在\(S\)内"的不同简单无向连通图的个数对\(998244353\)取模的结果. \(n\le ...