试证明: 如果质量力有势, 即存在 $\phi$ 使 ${\bf F}=-\n \phi$, 那么理想流体的能量守恒方程的微分形式可写为 $$\bex \cfrac{\rd}{\rd t}\sex{e+\cfrac{u^2}{}+\cfrac{p}{\rho}+\phi} =\cfrac{1}{\rho}\cfrac{\p p}{\p t}+\cfrac{\p \phi}{\p t}. \eex$$

证明: 由 (1. 21), $$\bex \cfrac{\rd }{\rd t}\sex{e+\cfrac{u^2}{2}} +\cfrac{1}{\rho }[p\Div{\bf u}+({\bf u}\cdot\n)p]=-({\bf u}\cdot\n)\phi, \eex$$ 而又 $$\beex \bea \cfrac{1}{\rho}[p\Div{\bf u}+({\bf u}\cdot\n)p] &=\cfrac{p}{\rho^2}\sez{-\cfrac{\rd \rho}{\rd t}} +\cfrac{1}{\rho}\sex{\cfrac{\rd p}{\rd t}-\cfrac{\p t}{\p t}}\\ &=p\cfrac{\rd }{\rd t}\cfrac{1}{\rho} +\cfrac{1}{\rho}\cfrac{\rd p}{\rd t} -\cfrac{1}{\rho}\cfrac{\p p}{\p t}\\ &=\cfrac{\rd }{\rd t}\cfrac{p}{\rho} -\cfrac{1}{\rho}\cfrac{\p p}{\p t},\\ -({\bf u}\cdot\n)\phi&=-\cfrac{\rd\phi}{\rd t}+\cfrac{\p \phi}{\p t}, \eea \eeex$$ 我们有 $$\bex \cfrac{\rd}{\rd t}\sex{e+\cfrac{u^2}{2}+\cfrac{p}{\rho}+\phi} =\cfrac{1}{\rho}\cfrac{\p p}{\p t}+\cfrac{\p \phi}{\p t}. \eex$$

[物理学与PDEs]第2章习题2 质量力有势时的能量方程的更多相关文章

  1. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  2. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  3. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  4. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  5. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  6. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

  7. [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

    设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...

  8. [物理学与PDEs]第1章习题5 偶极子的电场强度

    试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...

  9. [物理学与PDEs]第5章习题10 多凸函数一个例子

    证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...

随机推荐

  1. java类加载及类初始化

    1.前言 java是跨平台语言,主要是因为它的java虚拟机的存在,java有事编译语言,所以需要将编写的java文件编译成jvm可运用的class字节码文件.在java中一切皆对象.对于Java虚拟 ...

  2. 回去试idea

    https://blog.csdn.net/s_eal/article/details/81486472?utm_source=blogxgwz0

  3. 清除被占用的8080端口,否则npm run dev无法正常运行

    解决方案一: 1. 打开git-bash2. 输入:netstat -ano查看所有端口信息,如图,找到端口 8080,以及对应的 PID 3.输入:tskill PID 即可杀死进程 解决方案二: ...

  4. 在dialog的content中嵌入select的获取选中值方法

    var shortNameList = "<select><option value='1'>1</option><option value='2' ...

  5. day15-面向对象基础(二)

    今天整理类的组合以及类的三大特性 1.类的组合 2.类的继承 3.类的封装 4.类的多态 开始今日份整理 1.类的组合 类与类之间,并不是独立的,很多的时候在正常使用的时候都是类与类之间互相调用,所以 ...

  6. 【转】Android中保持Service的存活

    这几天一直在准备考试,总算有个半天时间可以休息下,写写博客. 如何让Service keep alive是一个很常见的问题. 在APP开发过程中,需要Service持续提供服务的应用场景太多了,比如闹 ...

  7. Jenkins pipeline:pipeline 语法详解

    jenkins  pipeline 总体介绍 pipeline 是一套运行于jenkins上的工作流框架,将原本独立运行于单个或者多个节点的任务连接起来,实现单个任务难以完成的复杂流程编排与可视化. ...

  8. 10分钟,AppCan帮你搞定跨平台开发APP问题!

    跨平台开发APP时,开发者总会遇到一些问题,如打包失败等等,尤其对于iOS来说,由于它的限制性会导致一些状况发生(如证书上传问题等),小编总结了几个AppCan在线IOS打包失败常见的情况及排查技巧, ...

  9. AI 生成式对抗网络(GAN)

    生成式对抗网络(Generative Adversarial Network,简称GAN),主要由两部分构成:生成模型G和判别模型D.训练GAN就是两种模型的对抗过程. 生成模型:利用任意噪音(ran ...

  10. python小白——进阶之路——day3天-———容器类型数据+Number类型强制类型转换

    -->Number 部分 int :     整型   浮点型 布尔类型  纯数字字符串 float:    整型   浮点型 布尔类型  纯数字字符串 complex:  整型   浮点型 布 ...