Constructing continuous functions
This post summarises different ways of constructing continuous functions, which are introduced in Section 18 of James Munkres “Topology”.
- Constant function.
Inclusion function.
N.B. The function domain should have the subspace topology relative to the range.
Composition of continuous functions. Specifically, composition of continuous real-valued functions via simple arithmetic, i.e. sum, difference, product and quotient. For the case of quotient, the function as the denominator should never be evaluated to 0.
Restricting the domain of a continuous function.
N.B. The reduced domain should be assigned the subspace topology with respect to the original domain.
Restricting or expanding the range of a continuous function.
N.B. The smaller range should have the subspace topology with respect to the larger range.
Local formulation of continuity,i.e. the function is continuous if it is still continuous after restricting its domain to each open set in an open covering of the original domain.
Pasting continuous functions with their domains on patches of closed sets which cover the whole domain.
Comment: In the overlapping subdomain, the functions on different patches should be defined consistently. This condition is not required in “local formulation of continuity”, where the covering of the whole domain is made from open sets instead of closed sets. From this difference, we can sense the difference between open set and closed set. The former is intrinsically related to continuity, which can be phenomenologically construed as that the open sets can infiltrate into one another infinitely, even though the amount of infiltration is often infinitesimal if a metric is also assigned to the space. On the contrary, the latter has a clearly set demarcation or buffer zone between the functions on different patches without further penetration or interaction. Therefore, it does not intrinsically imply continuity and the function values in the overlapping subdomain must be consistent to ensure the continuity of the fully assembled function.
Maps into products, which ensures the equivalence between the continuity of the original function and that of its coordinate functions.
Uniform limit of a sequence of continuous functions.
N.B. The range space of these functions should have a metric.
Constructing continuous functions的更多相关文章
- Summary of continuous function spaces
In general differential calculus, we have learned the definitions of function continuity, such as fu ...
- 神经网络可以拟合任意函数的视觉证明A visual proof that neural nets can compute any function
One of the most striking facts about neural networks is that they can compute any function at all. T ...
- ural 1346. Intervals of Monotonicity
1346. Intervals of Monotonicity Time limit: 1.0 secondMemory limit: 64 MB It’s well known that a dom ...
- [转]Neural Networks, Manifolds, and Topology
colah's blog Blog About Contact Neural Networks, Manifolds, and Topology Posted on April 6, 2014 top ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
- Understanding Convolution in Deep Learning
Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...
- Python数据结构应用4——搜索(search)
Search是数据结构中最基础的应用之一了,在python中,search有一个非常简单的方法如下: 15 in [3,5,4,1,76] False 不过这只是search的一种形式,下面列出多种形 ...
- James Munkres《拓扑学》笔记前言
许久以前,我读到了侯捷先生于<深入浅出MFC>一书中所写的“勿在浮砂筑高台”这句话,颇受警醒与启发.如今在工科领域已摸索多年,亦逐渐真切而深刻地认识到,若没有坚实.完整.细致的数学理论作为 ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- 从Java角度修复SQL注入漏洞
很多情况因为过滤不严导致很多网站存在sql注入,这里以用户登陆为例,简单举例 首先创建一个测试的数据库 比较基础,不写创建过程了 java代码如下: package cn.basic.jdbc; im ...
- java实现sftp客户端上传文件夹的功能
使用的jar: <dependencies> <dependency> <groupId>jsch</groupId> <artifactId&g ...
- java 11 完全支持Linux容器(包括Docker)
许多运行在Java虚拟机中的应用程序(包括Apache Spark和Kafka等数据服务以及传统的企业应用程序)都可以在Docker容器中运行.但是在Docker容器中运行Java应用程序一直存在一个 ...
- python的内置模块xml模块方法 xml解析 详解以及使用
一.XML介绍 xml是实现不同语言或程序直接进行数据交换的协议,跟json差不多,单json使用起来更简单,不过现在还有很多传统公司的接口主要还是xml xml跟html都属于是标签语言 我们主要学 ...
- Numpy进阶操作
目录 1. 如何获取满足条设定件的索引 2. 如何将数据导入和导出csv文件 3. 如何保存和加载numpy对象 4. 如何按列或行拼接numpy数组 5. 如何按列对numpy数组进行排序 6. 如 ...
- crm 数据展示 和分页思想(一)
1. 数据的展示 数据通过ORM查询出来 对象列表 QuerySet 1. 普通的字段 对象.字段名 ——> 数据库中的值 <td>{{ customer.phone }}</ ...
- NOI-OJ 1.12 ID:10 素数对
整体思路 本题涉及大量素数的使用,故使用埃拉拖色尼算法提前计算出素数表可以避免大量.重复的计算. 判断素数对很简单,使用两个变量p1和p2代表素数表中的第一个和第二个素数,依次在表中向后移动,判断p2 ...
- [再寄小读者之数学篇](2014-11-02 Herglotz' trick)
设 $f$ 是 $\bbR$ 上周期为 $1$ 的连续可微函数, 满足 $$\bee\label{141102_f} f(x)+f\sex{x+\frac{1}{2}}=f(2x),\quad\for ...
- 逻辑运算符、位运算符、三元运算符、判断语句(if,switch)
逻辑运算符 逻辑与 &:由false则false 逻辑或 |:有true则true 逻辑异或 ^:相同为false,不同为true 逻辑非 !:非false则true,非true则false ...
- wc 命令详解
1.wc 命令作用 统计文件里面有多少单词,多少行,多少字符. 2.wc 语法 wc [-lwm] 选项与参数:-l :仅列出行:-w :仅列出多少字(英文单字):-m :多少字符: 3.例子 使用w ...