Surjectivity is stable under base change
Nowadays, I close a new small case.
Proposition. For a surjective morphism between scheme $X\stackrel{f}\to Y$, For any $Z\to Y$, the base change $X\times_Y Z\to Z$ is also surjective.
The diagram is as following
$$\begin{array}{ccc} X\times_Y Z& \to & Z\\ \downarrow && \downarrow \\ Z& \to & Y\\\end{array}$$
In the first place, we will reduce the proposition into affine case.Since the proof involves some essential computation of tensor product, I will deal with secondly. At the end of the post, I will close the proof.
First Step (reduce to affine case). We will prove a more stronger statement,
For any $z\in Z$, let $y\in Y$ be its image, if there exists $x\in X$ such that $f(x)=y$, then exists $w\in X\times_Y Z$ mapsto $y$.
Take an affine set $\operatorname{Spec}A, \operatorname{Spec}B, \operatorname{Spec}C$ of $x,y,z$ such that the image of $\operatorname{Spec} A$ and $\operatorname{Spec} C$ is in $\operatorname{Spec} B$. So the problem reduce to the following statement.
Let $A\stackrel{\varphi}\leftarrow B\stackrel{\psi}\to C$ be ring homomorphisms, and primes $\mathfrak{p}, \mathfrak{r}$ of $A,C$ respectively, such that $\mathfrak{q}=\varphi^{-1}(\mathfrak{p})=\psi^{-1}(\mathfrak{r})$. Then there exists a prime $\mathfrak{s}$ of $A\otimes_B C$, such $\mathfrak{r}$ is the inverse image of $\mathfrak{s}$.
$$\begin{array}{ccc} A\otimes_B C& \leftarrow & A\\ \uparrow && \uparrow \\ C& \leftarrow & B \\ \end{array}\qquad \begin{array}{ccc} \mathfrak{s}& \mapsto & \mathfrak{p}\\ \overline{\downarrow} && \overline{\downarrow} \\ \mathfrak{r}& \mapsto & \mathfrak{q} \\ \end{array} $$
Second Step (some computation of tensor product). We show the following
Consider the tensor product of $k$-algebra $R_1\otimes_k R_2$. For a mutiplitive subset $S$ of $R_1$, one have $$S^{-1}(R_1\otimes_k R_2)=S^{-1} R_1\otimes_{\overline{S}^{-1}k} \overline{S}^{-1} R_2$$Where $\overline{S}\subseteq k$ is the inverse image of $S$, and $k$ is not necessary to be a field.
The proof is nothing but check the structure of tensor product. More precisely, $S^{-1}(R_1\otimes_kR_2)=S^{-1}R_1\otimes_{R_1}R_1\otimes_k R_2 =S^{-1}R_1 \otimes_kR_2$ and $$\begin{cases} \frac{r_1}{s}\otimes \frac{r_2}{s'} = \frac{r_1}{ss'}s'\otimes \frac{r_2}{s'}=\frac{r_1}{ss'}\otimes s'\frac{r_2}{s'}=\frac{r_1}{ss'}\otimes r_2\\\frac{r_1}{s_1}\frac{k}{s}\otimes \frac{r_2}{s_2}=\frac{r_1}{s_1}\frac{k}{s}\otimes s\frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}k\otimes \frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}\otimes \frac{k}{s}\frac{r_2}{s_2}\end{cases}$$
Third Step (finish the proof). By the second step, we can assume $B, C$ to be local ring. Then it reduces to whether $A\otimes_B C \otimes C/\mathfrak{r}=0$. We have know that $A\otimes_B B/\mathfrak{q}\neq 0$ by the assumption on $\mathfrak{q}$. One have $$A\otimes_B C\otimes_C C/\mathfrak{r}=\underbrace{A\otimes_B B/\mathfrak{q}}_{\neq 0}\otimes_{B/\mathfrak{q}}\otimes C/\mathfrak{r}$$But now, $B/\mathfrak{q}$ and $C/\mathfrak{r}$ is field, thus, it is not zero either, the proof is complete.
Appendix (The fiber of $y\in Y$ in the morphism $X \to Y$ is $X\times_Y k(y)$). We only need to prove the affine case. Let $B\stackrel{\varphi}\to A$ be the associated ring homomorphism, given a prime $\mathfrak{q}$ of $B$, one have $$\begin{array}{rl}f^{-1}(\mathfrak{q})& = \{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})=\mathfrak{q}\} \\ & =\{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})\subseteq \mathfrak{q}, \varphi(\mathfrak{q})\subseteq \mathfrak{p} \}\\ & \cong \{\textrm{prime } \mathfrak{p}\subseteq A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}}\} \\ & \cong \operatorname{Spec} (A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}})=\operatorname{Spec}( A\otimes_B B_\mathfrak{q}/\mathfrak{q}B_{\mathfrak{q}})=\operatorname{Spec} (A\otimes_B k(\mathfrak{q}))\end{array}$$Where $k(\mathfrak{q})=\operatorname{Frac} B/\mathfrak{q}=B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$ is the residual field of the point $\mathfrak{q}$.

Surjectivity is stable under base change的更多相关文章
- 关于CI/CD/CD (Continuous Integration/Continuous Delivery/Continuous Deployment)
Continuous Integration (CI) Continuous integration (CI) is the process that ensures the stability of ...
- C++ Core Guidelines
C++ Core Guidelines September 9, 2015 Editors: Bjarne Stroustrup Herb Sutter This document is a very ...
- 说说设计模式~适配器模式(Adapter)
返回目录 之前和大家一起谈了工厂模式和单例模式,今天来看一下另一种非常常用的模式,它就是适配器模式,第一次看到这个模式是通过“张逸”老师的“设计之道”这篇文章,在这里表adapter讲的很透彻,今天把 ...
- CakeDC(cakephp company)Git workflow--适合于较大团队大型项目开发
CakeDC Git workflow是一个项目开发和版本发布的工作流,在这个工作流程中开发和版本发布周期是基于几个关键阶段(key phases): Development: 所有活跃的开发活动都由 ...
- Raspberry Pi Kernel Compilation 内核编译官方文档
elinux.org/Raspberry_Pi_Kernel_Compilation#Use_the_provided_compiler Software & Distributions: S ...
- 1027. Colors in Mars (20) PAT
题目:http://pat.zju.edu.cn/contests/pat-a-practise/1027 简单题,考察十进制数和n进制数的转换和输出格式的控制. People in Mars rep ...
- PHP 使用用户自定义的比较函数对数组中的值进行排序
原文:PHP 使用用户自定义的比较函数对数组中的值进行排序 usort (PHP 4, PHP 5) usort — 使用用户自定义的比较函数对数组中的值进行排序 说明 bool ...
- libevent源码阅读笔记(一):libevent对epoll的封装
title: libevent源码阅读笔记(一):libevent对epoll的封装 最近开始阅读网络库libevent的源码,阅读源码之前,大致看了张亮写的几篇博文(libevent源码深度剖析 h ...
- RPi Kernel Compilation
Overview This page explains how to rebuild the kernel image for the RPi. There are two possible rout ...
随机推荐
- Python3+Selenium2完整的自动化测试实现之旅(七):完整的轻量级自动化框架实现
一.前言 前面系列Python3+Selenium2自动化系列博文,陆陆续续总结了自动化环境最基础环境的搭建.IE和Chrome浏览器驱动配置.selenium下的webdriver模块提供的元素定位 ...
- Perl List::Util模块用法详解
本文介绍Perl标准库List::Utils中的列表工具,有时候它们非常好用.比如Perl中测试列表中是否包含某个元素(某个元素是否存在于列表中)没有比较直接比较方便的功能,但使用List::Util ...
- C# 常用小点
1]创建文件夹 //相对路径 string FilePath = Server.MapPath("./") + "ImageFile/Images/" + Da ...
- PHP中的Traits用法详解
PHP是单继承的语言,在PHP 5.4 Traits出现之前,PHP的类无法同时从两个基类继承属性或方法.php的Traits和Go语言的组合功能有点类似, 通过在类中使用use关键字声明要组合的Tr ...
- C#/VB.NET 操作Word批注(二)——如何插入图片、读取、回复Word批注内容
序 在前面的文章C# 如何插入.修改.删除Word批注一文中介绍了如何操作Word批注的一些方法,在本篇文章中继续介绍操作Word批注的方法.分以下三种情况来介绍: 1. 插入图片到Word批注 2. ...
- python学习笔记(八)、特殊方法、特性和迭代器
1 新式类和旧式类 python类的工作方式在不断变化.较新的Python2版本有两种类,其中旧式类正快速退出舞台.新式类时Python2.2 引入的,提供了一些额外功能,如支持函数super 和 p ...
- Python全栈开发之---redis数据库
1.redis简介 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(s ...
- 关于token和refresh token
最近在做公司的认证系统,总结了如下一番心得. 传统的认证方式一般采用cookie/session来实现,这是我们的出发点. 1.为什么选用token而不选用cookie/session? 本质上tok ...
- 弹窗滑动,造成body跟随滑动解决办法
今天测试的时候遇到一个移动端的bug,为什么说是移动端的呢,因为在谷歌浏览器的移动模式下,这个是不会出现的.先描述具体的情况.一个长页面(肯定是比手机长的页面,所以肯定会滑动),里面有一个按钮,点击按 ...
- Ext中setVersion和getVersion
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...