Nowadays, I close a new small case.

Proposition. For a surjective morphism between scheme $X\stackrel{f}\to Y$, For any $Z\to Y$, the base change $X\times_Y Z\to Z$ is also surjective.

The diagram is as following

$$\begin{array}{ccc} X\times_Y Z& \to & Z\\ \downarrow && \downarrow \\ Z& \to & Y\\\end{array}$$

In the first place, we will reduce the proposition into affine case.Since the proof involves some essential computation of tensor product, I will deal with secondly. At the end of the post, I will close the proof.

First Step (reduce to affine case). We will prove a more stronger statement,

For any $z\in Z$, let $y\in Y$ be its image, if there exists $x\in X$ such that $f(x)=y$, then exists $w\in X\times_Y Z$ mapsto $y$.

Take an affine set $\operatorname{Spec}A, \operatorname{Spec}B, \operatorname{Spec}C$ of $x,y,z$ such that the image of $\operatorname{Spec} A$ and $\operatorname{Spec} C$ is in $\operatorname{Spec} B$. So the problem reduce to the following statement.

Let $A\stackrel{\varphi}\leftarrow B\stackrel{\psi}\to C$ be ring homomorphisms, and primes $\mathfrak{p}, \mathfrak{r}$ of $A,C$ respectively, such that $\mathfrak{q}=\varphi^{-1}(\mathfrak{p})=\psi^{-1}(\mathfrak{r})$. Then there exists a prime $\mathfrak{s}$ of $A\otimes_B C$, such $\mathfrak{r}$ is the inverse image of $\mathfrak{s}$.

$$\begin{array}{ccc} A\otimes_B C& \leftarrow & A\\ \uparrow && \uparrow \\ C& \leftarrow & B \\ \end{array}\qquad \begin{array}{ccc} \mathfrak{s}& \mapsto & \mathfrak{p}\\ \overline{\downarrow} && \overline{\downarrow} \\ \mathfrak{r}& \mapsto & \mathfrak{q} \\ \end{array} $$

Second Step (some computation of tensor product). We show the following

Consider the tensor product of $k$-algebra $R_1\otimes_k R_2$. For a mutiplitive subset $S$ of $R_1$, one have $$S^{-1}(R_1\otimes_k R_2)=S^{-1} R_1\otimes_{\overline{S}^{-1}k} \overline{S}^{-1} R_2$$Where $\overline{S}\subseteq k$ is the inverse image of $S$, and $k$ is not necessary to be a field.

The proof is nothing but check the structure of tensor product. More precisely, $S^{-1}(R_1\otimes_kR_2)=S^{-1}R_1\otimes_{R_1}R_1\otimes_k R_2 =S^{-1}R_1 \otimes_kR_2$ and $$\begin{cases} \frac{r_1}{s}\otimes \frac{r_2}{s'} = \frac{r_1}{ss'}s'\otimes \frac{r_2}{s'}=\frac{r_1}{ss'}\otimes s'\frac{r_2}{s'}=\frac{r_1}{ss'}\otimes r_2\\\frac{r_1}{s_1}\frac{k}{s}\otimes \frac{r_2}{s_2}=\frac{r_1}{s_1}\frac{k}{s}\otimes s\frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}k\otimes \frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}\otimes \frac{k}{s}\frac{r_2}{s_2}\end{cases}$$

Third Step (finish the proof). By the second step, we can assume $B, C$ to be local ring. Then it reduces to whether $A\otimes_B C \otimes C/\mathfrak{r}=0$. We have know that $A\otimes_B B/\mathfrak{q}\neq 0$ by the assumption on $\mathfrak{q}$. One have $$A\otimes_B C\otimes_C C/\mathfrak{r}=\underbrace{A\otimes_B B/\mathfrak{q}}_{\neq 0}\otimes_{B/\mathfrak{q}}\otimes C/\mathfrak{r}$$But now, $B/\mathfrak{q}$ and $C/\mathfrak{r}$ is field, thus, it is not zero either, the proof is complete.

Appendix (The fiber of $y\in Y$ in the morphism $X \to Y$ is $X\times_Y k(y)$). We only need to prove the affine case. Let $B\stackrel{\varphi}\to A$ be the associated ring homomorphism, given a prime $\mathfrak{q}$ of $B$, one have $$\begin{array}{rl}f^{-1}(\mathfrak{q})& = \{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})=\mathfrak{q}\} \\ & =\{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})\subseteq \mathfrak{q}, \varphi(\mathfrak{q})\subseteq \mathfrak{p} \}\\ & \cong \{\textrm{prime } \mathfrak{p}\subseteq A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}}\} \\ & \cong \operatorname{Spec} (A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}})=\operatorname{Spec}( A\otimes_B B_\mathfrak{q}/\mathfrak{q}B_{\mathfrak{q}})=\operatorname{Spec} (A\otimes_B k(\mathfrak{q}))\end{array}$$Where $k(\mathfrak{q})=\operatorname{Frac} B/\mathfrak{q}=B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$ is the residual field of the point $\mathfrak{q}$.

Surjectivity is stable under base change的更多相关文章

  1. 关于CI/CD/CD (Continuous Integration/Continuous Delivery/Continuous Deployment)

    Continuous Integration (CI) Continuous integration (CI) is the process that ensures the stability of ...

  2. C++ Core Guidelines

    C++ Core Guidelines September 9, 2015 Editors: Bjarne Stroustrup Herb Sutter This document is a very ...

  3. 说说设计模式~适配器模式(Adapter)

    返回目录 之前和大家一起谈了工厂模式和单例模式,今天来看一下另一种非常常用的模式,它就是适配器模式,第一次看到这个模式是通过“张逸”老师的“设计之道”这篇文章,在这里表adapter讲的很透彻,今天把 ...

  4. CakeDC(cakephp company)Git workflow--适合于较大团队大型项目开发

    CakeDC Git workflow是一个项目开发和版本发布的工作流,在这个工作流程中开发和版本发布周期是基于几个关键阶段(key phases): Development: 所有活跃的开发活动都由 ...

  5. Raspberry Pi Kernel Compilation 内核编译官方文档

    elinux.org/Raspberry_Pi_Kernel_Compilation#Use_the_provided_compiler Software & Distributions: S ...

  6. 1027. Colors in Mars (20) PAT

    题目:http://pat.zju.edu.cn/contests/pat-a-practise/1027 简单题,考察十进制数和n进制数的转换和输出格式的控制. People in Mars rep ...

  7. PHP 使用用户自定义的比较函数对数组中的值进行排序

    原文:PHP 使用用户自定义的比较函数对数组中的值进行排序 usort (PHP 4, PHP 5) usort —      使用用户自定义的比较函数对数组中的值进行排序 说明       bool ...

  8. libevent源码阅读笔记(一):libevent对epoll的封装

    title: libevent源码阅读笔记(一):libevent对epoll的封装 最近开始阅读网络库libevent的源码,阅读源码之前,大致看了张亮写的几篇博文(libevent源码深度剖析 h ...

  9. RPi Kernel Compilation

    Overview This page explains how to rebuild the kernel image for the RPi. There are two possible rout ...

随机推荐

  1. SpringMVC集成rabbitmq:优化秒杀下单环节

    前言 上一篇在springboot中基于自动配置集成了rabbitmq.那么回到最初的话题中就是想在秒杀下单环节增加排队机制,从而达到限流的目的. 优化秒杀下单流程 之前是在控制器里拿到客户端请求后直 ...

  2. JsonRequestBehavior不存在问题,JsonRequestBehavior属于哪个dll

    1.C#.Net.C++.JScript.VB语法 获取或设置一个值,该值指示是否允许来自客户端的 HTTP GET 请求. 命名空间: System.Web.Mvc程序集: System.Web.M ...

  3. Redux进阶(像VUEX一样使用Redux)

    更好的阅度体验 前言 redux的问题 方案目标 如何实现 思考 前言 Redux是一个非常实用的状态管理库,对于大多数使用React库的开发者来说,Redux都是会接触到的.在使用Redux享受其带 ...

  4. Java开发笔记(十五)短路逻辑运算的优势

    前面提到逻辑运算只能操作布尔变量,这其实是不严谨的,因为经过Java编程实现,会发现“&”.“|”.“^”这几个逻辑符号竟然可以对数字进行运算.譬如下面的代码就直接对数字分别开展了“与”.“或 ...

  5. kafka配置记录

    1. 准备三台机器,系统CentOs6 2. 安装好JDK和zookeeper 参考: zookeeper配置记录 3. 解压安装包到指定目录 tar -zxvf kafka_2.12-2.1.0.t ...

  6. js数组方法大全

    JavaScript中创建数组有两种方式 (一)使用 Array 构造函数: var arr1 = new Array(); //创建一个空数组var arr2 = new Array(20); // ...

  7. 17 , CSS 区块、浮动、定位、溢出、滚动条

    1.CSS 中区块的使用 2.CSS 中浮动的使用 3.CSS 中定位的使用 4.CSS 中溢出的使用 5.CSS 中滚动条的使用 17.1 CSS 中区块的使用 属性名称 属性值 说明 width ...

  8. 美团技术沙龙01 - 58到家服务的订单调度&数据分析技术

    1. 2015.4.15 到家服务的订单调度&数据分析技术 58到家· 黄海斌 @xemoaya 2.agenda • 58到家介绍 • 订单管理系统介绍 • 数据分析技术的应用 3.2015 ...

  9. 2019Java查漏补缺(三)

    1.为什么这个public的类的类名必须和文件名相同    是为了方便虚拟机在相应的路径中找到相应的类所对应的字节码文件    2.java8 的一些新特性:     3: 数据库隔离级别 隔离级别 ...

  10. JMeter中文返回乱码

    JMeter中文返回乱码 结果树响应数据中文返回乱码 其实有几个方法: 在线程组->http请求的字符集里设置 ​ 在http 消息管理头中设置 ​ 3.如果以上方法还没有解决,请打开安装目录 ...