Nowadays, I close a new small case.

Proposition. For a surjective morphism between scheme $X\stackrel{f}\to Y$, For any $Z\to Y$, the base change $X\times_Y Z\to Z$ is also surjective.

The diagram is as following

$$\begin{array}{ccc} X\times_Y Z& \to & Z\\ \downarrow && \downarrow \\ Z& \to & Y\\\end{array}$$

In the first place, we will reduce the proposition into affine case.Since the proof involves some essential computation of tensor product, I will deal with secondly. At the end of the post, I will close the proof.

First Step (reduce to affine case). We will prove a more stronger statement,

For any $z\in Z$, let $y\in Y$ be its image, if there exists $x\in X$ such that $f(x)=y$, then exists $w\in X\times_Y Z$ mapsto $y$.

Take an affine set $\operatorname{Spec}A, \operatorname{Spec}B, \operatorname{Spec}C$ of $x,y,z$ such that the image of $\operatorname{Spec} A$ and $\operatorname{Spec} C$ is in $\operatorname{Spec} B$. So the problem reduce to the following statement.

Let $A\stackrel{\varphi}\leftarrow B\stackrel{\psi}\to C$ be ring homomorphisms, and primes $\mathfrak{p}, \mathfrak{r}$ of $A,C$ respectively, such that $\mathfrak{q}=\varphi^{-1}(\mathfrak{p})=\psi^{-1}(\mathfrak{r})$. Then there exists a prime $\mathfrak{s}$ of $A\otimes_B C$, such $\mathfrak{r}$ is the inverse image of $\mathfrak{s}$.

$$\begin{array}{ccc} A\otimes_B C& \leftarrow & A\\ \uparrow && \uparrow \\ C& \leftarrow & B \\ \end{array}\qquad \begin{array}{ccc} \mathfrak{s}& \mapsto & \mathfrak{p}\\ \overline{\downarrow} && \overline{\downarrow} \\ \mathfrak{r}& \mapsto & \mathfrak{q} \\ \end{array} $$

Second Step (some computation of tensor product). We show the following

Consider the tensor product of $k$-algebra $R_1\otimes_k R_2$. For a mutiplitive subset $S$ of $R_1$, one have $$S^{-1}(R_1\otimes_k R_2)=S^{-1} R_1\otimes_{\overline{S}^{-1}k} \overline{S}^{-1} R_2$$Where $\overline{S}\subseteq k$ is the inverse image of $S$, and $k$ is not necessary to be a field.

The proof is nothing but check the structure of tensor product. More precisely, $S^{-1}(R_1\otimes_kR_2)=S^{-1}R_1\otimes_{R_1}R_1\otimes_k R_2 =S^{-1}R_1 \otimes_kR_2$ and $$\begin{cases} \frac{r_1}{s}\otimes \frac{r_2}{s'} = \frac{r_1}{ss'}s'\otimes \frac{r_2}{s'}=\frac{r_1}{ss'}\otimes s'\frac{r_2}{s'}=\frac{r_1}{ss'}\otimes r_2\\\frac{r_1}{s_1}\frac{k}{s}\otimes \frac{r_2}{s_2}=\frac{r_1}{s_1}\frac{k}{s}\otimes s\frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}k\otimes \frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}\otimes \frac{k}{s}\frac{r_2}{s_2}\end{cases}$$

Third Step (finish the proof). By the second step, we can assume $B, C$ to be local ring. Then it reduces to whether $A\otimes_B C \otimes C/\mathfrak{r}=0$. We have know that $A\otimes_B B/\mathfrak{q}\neq 0$ by the assumption on $\mathfrak{q}$. One have $$A\otimes_B C\otimes_C C/\mathfrak{r}=\underbrace{A\otimes_B B/\mathfrak{q}}_{\neq 0}\otimes_{B/\mathfrak{q}}\otimes C/\mathfrak{r}$$But now, $B/\mathfrak{q}$ and $C/\mathfrak{r}$ is field, thus, it is not zero either, the proof is complete.

Appendix (The fiber of $y\in Y$ in the morphism $X \to Y$ is $X\times_Y k(y)$). We only need to prove the affine case. Let $B\stackrel{\varphi}\to A$ be the associated ring homomorphism, given a prime $\mathfrak{q}$ of $B$, one have $$\begin{array}{rl}f^{-1}(\mathfrak{q})& = \{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})=\mathfrak{q}\} \\ & =\{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})\subseteq \mathfrak{q}, \varphi(\mathfrak{q})\subseteq \mathfrak{p} \}\\ & \cong \{\textrm{prime } \mathfrak{p}\subseteq A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}}\} \\ & \cong \operatorname{Spec} (A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}})=\operatorname{Spec}( A\otimes_B B_\mathfrak{q}/\mathfrak{q}B_{\mathfrak{q}})=\operatorname{Spec} (A\otimes_B k(\mathfrak{q}))\end{array}$$Where $k(\mathfrak{q})=\operatorname{Frac} B/\mathfrak{q}=B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$ is the residual field of the point $\mathfrak{q}$.

Surjectivity is stable under base change的更多相关文章

  1. 关于CI/CD/CD (Continuous Integration/Continuous Delivery/Continuous Deployment)

    Continuous Integration (CI) Continuous integration (CI) is the process that ensures the stability of ...

  2. C++ Core Guidelines

    C++ Core Guidelines September 9, 2015 Editors: Bjarne Stroustrup Herb Sutter This document is a very ...

  3. 说说设计模式~适配器模式(Adapter)

    返回目录 之前和大家一起谈了工厂模式和单例模式,今天来看一下另一种非常常用的模式,它就是适配器模式,第一次看到这个模式是通过“张逸”老师的“设计之道”这篇文章,在这里表adapter讲的很透彻,今天把 ...

  4. CakeDC(cakephp company)Git workflow--适合于较大团队大型项目开发

    CakeDC Git workflow是一个项目开发和版本发布的工作流,在这个工作流程中开发和版本发布周期是基于几个关键阶段(key phases): Development: 所有活跃的开发活动都由 ...

  5. Raspberry Pi Kernel Compilation 内核编译官方文档

    elinux.org/Raspberry_Pi_Kernel_Compilation#Use_the_provided_compiler Software & Distributions: S ...

  6. 1027. Colors in Mars (20) PAT

    题目:http://pat.zju.edu.cn/contests/pat-a-practise/1027 简单题,考察十进制数和n进制数的转换和输出格式的控制. People in Mars rep ...

  7. PHP 使用用户自定义的比较函数对数组中的值进行排序

    原文:PHP 使用用户自定义的比较函数对数组中的值进行排序 usort (PHP 4, PHP 5) usort —      使用用户自定义的比较函数对数组中的值进行排序 说明       bool ...

  8. libevent源码阅读笔记(一):libevent对epoll的封装

    title: libevent源码阅读笔记(一):libevent对epoll的封装 最近开始阅读网络库libevent的源码,阅读源码之前,大致看了张亮写的几篇博文(libevent源码深度剖析 h ...

  9. RPi Kernel Compilation

    Overview This page explains how to rebuild the kernel image for the RPi. There are two possible rout ...

随机推荐

  1. 痞子衡嵌入式:ARM Cortex-M文件那些事(7)- 反汇编文件(.s/.lst/.dump)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家讲的是嵌入式开发里的反汇编文件(.s, .lst, .dump). 痞子衡在第四.五.六节课分别介绍了编译器/链接器生成的3种output文件( ...

  2. MySQLSource-Flume

    1. 自定义Source说明 实时监控MySQL,从MySQL中获取数据传输到HDFS或者其他存储框架,所以此时需要我们自己实现MySQLSource. 2. 自定义MySQLSource步骤 根据官 ...

  3. CSS---伪类与伪元素的区别

    在CSS中对于伪类和伪元素并没有做出很明显的区别定义,两者的语法是一样的,都是以 : 开头,这样导致我们将一些伪元素误认为伪类,如 :before :after 而在CSS3中给出了明显的定义. ☞ ...

  4. 纯CSS修改checkbox复选框样式

    借鉴网友博客, 改用后整理收录 效果图: 移入: <!DOCTYPE html> <html> <head> <meta charset="UTF- ...

  5. WEB前端学习代码片段记录

    1.JS设计模式片段 Function.prototype.addMethod = function (name,fn) { this.prototype[name] = fn; return thi ...

  6. Lyndon Word学习笔记

    Lyndon Word 定义:对于字符串\(s\),若\(s\)的最小后缀为其本身,那么称\(s\)为Lyndon串 等价性:\(s\)为Lyndon串等价于\(s\)本身是其循环移位中最小的一个 性 ...

  7. Microsoft Dynamics CRM 2015 and Microsoft Dynamics CRM 2016 Performance and Scalability Documentation

    摘要: 本人微信公众号:微软动态CRM专家罗勇 ,回复285或者20181126可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me ...

  8. Node.js模块导入导出

    这篇文章本来是想模块导入导出和事件循环一起写的,但是感觉一起写的话会太长了,所以就分开两篇文章写吧.下一篇会重点介绍一下js中的事件循环,js代码到底是以何种顺序去执行的呢?我相信你看懂了事件循环再去 ...

  9. ERROR 1071 (42000): Specified key was too long; max key length is 767 bytes

    今天在MySQL 5.6版本的数据库中修改InnoDB表字段长度时遇到了"ERROR 1071 (42000): Specified key was too long; max key le ...

  10. Linux查看分区文件系统类型总结

    在Linux 中如何查看分区的文件系统类型,下面总结几种查看分区文件系统类型的方法. 1: df -T 命令查看 这个是最简单的命令,文件系统类型在Type列输出.只可以查看已经挂载的分区和文件系统类 ...