Surjectivity is stable under base change
Nowadays, I close a new small case.
Proposition. For a surjective morphism between scheme $X\stackrel{f}\to Y$, For any $Z\to Y$, the base change $X\times_Y Z\to Z$ is also surjective.
The diagram is as following
$$\begin{array}{ccc} X\times_Y Z& \to & Z\\ \downarrow && \downarrow \\ Z& \to & Y\\\end{array}$$
In the first place, we will reduce the proposition into affine case.Since the proof involves some essential computation of tensor product, I will deal with secondly. At the end of the post, I will close the proof.
First Step (reduce to affine case). We will prove a more stronger statement,
For any $z\in Z$, let $y\in Y$ be its image, if there exists $x\in X$ such that $f(x)=y$, then exists $w\in X\times_Y Z$ mapsto $y$.
Take an affine set $\operatorname{Spec}A, \operatorname{Spec}B, \operatorname{Spec}C$ of $x,y,z$ such that the image of $\operatorname{Spec} A$ and $\operatorname{Spec} C$ is in $\operatorname{Spec} B$. So the problem reduce to the following statement.
Let $A\stackrel{\varphi}\leftarrow B\stackrel{\psi}\to C$ be ring homomorphisms, and primes $\mathfrak{p}, \mathfrak{r}$ of $A,C$ respectively, such that $\mathfrak{q}=\varphi^{-1}(\mathfrak{p})=\psi^{-1}(\mathfrak{r})$. Then there exists a prime $\mathfrak{s}$ of $A\otimes_B C$, such $\mathfrak{r}$ is the inverse image of $\mathfrak{s}$.
$$\begin{array}{ccc} A\otimes_B C& \leftarrow & A\\ \uparrow && \uparrow \\ C& \leftarrow & B \\ \end{array}\qquad \begin{array}{ccc} \mathfrak{s}& \mapsto & \mathfrak{p}\\ \overline{\downarrow} && \overline{\downarrow} \\ \mathfrak{r}& \mapsto & \mathfrak{q} \\ \end{array} $$
Second Step (some computation of tensor product). We show the following
Consider the tensor product of $k$-algebra $R_1\otimes_k R_2$. For a mutiplitive subset $S$ of $R_1$, one have $$S^{-1}(R_1\otimes_k R_2)=S^{-1} R_1\otimes_{\overline{S}^{-1}k} \overline{S}^{-1} R_2$$Where $\overline{S}\subseteq k$ is the inverse image of $S$, and $k$ is not necessary to be a field.
The proof is nothing but check the structure of tensor product. More precisely, $S^{-1}(R_1\otimes_kR_2)=S^{-1}R_1\otimes_{R_1}R_1\otimes_k R_2 =S^{-1}R_1 \otimes_kR_2$ and $$\begin{cases} \frac{r_1}{s}\otimes \frac{r_2}{s'} = \frac{r_1}{ss'}s'\otimes \frac{r_2}{s'}=\frac{r_1}{ss'}\otimes s'\frac{r_2}{s'}=\frac{r_1}{ss'}\otimes r_2\\\frac{r_1}{s_1}\frac{k}{s}\otimes \frac{r_2}{s_2}=\frac{r_1}{s_1}\frac{k}{s}\otimes s\frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}k\otimes \frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}\otimes \frac{k}{s}\frac{r_2}{s_2}\end{cases}$$
Third Step (finish the proof). By the second step, we can assume $B, C$ to be local ring. Then it reduces to whether $A\otimes_B C \otimes C/\mathfrak{r}=0$. We have know that $A\otimes_B B/\mathfrak{q}\neq 0$ by the assumption on $\mathfrak{q}$. One have $$A\otimes_B C\otimes_C C/\mathfrak{r}=\underbrace{A\otimes_B B/\mathfrak{q}}_{\neq 0}\otimes_{B/\mathfrak{q}}\otimes C/\mathfrak{r}$$But now, $B/\mathfrak{q}$ and $C/\mathfrak{r}$ is field, thus, it is not zero either, the proof is complete.
Appendix (The fiber of $y\in Y$ in the morphism $X \to Y$ is $X\times_Y k(y)$). We only need to prove the affine case. Let $B\stackrel{\varphi}\to A$ be the associated ring homomorphism, given a prime $\mathfrak{q}$ of $B$, one have $$\begin{array}{rl}f^{-1}(\mathfrak{q})& = \{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})=\mathfrak{q}\} \\ & =\{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})\subseteq \mathfrak{q}, \varphi(\mathfrak{q})\subseteq \mathfrak{p} \}\\ & \cong \{\textrm{prime } \mathfrak{p}\subseteq A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}}\} \\ & \cong \operatorname{Spec} (A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}})=\operatorname{Spec}( A\otimes_B B_\mathfrak{q}/\mathfrak{q}B_{\mathfrak{q}})=\operatorname{Spec} (A\otimes_B k(\mathfrak{q}))\end{array}$$Where $k(\mathfrak{q})=\operatorname{Frac} B/\mathfrak{q}=B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$ is the residual field of the point $\mathfrak{q}$.
Surjectivity is stable under base change的更多相关文章
- 关于CI/CD/CD (Continuous Integration/Continuous Delivery/Continuous Deployment)
Continuous Integration (CI) Continuous integration (CI) is the process that ensures the stability of ...
- C++ Core Guidelines
C++ Core Guidelines September 9, 2015 Editors: Bjarne Stroustrup Herb Sutter This document is a very ...
- 说说设计模式~适配器模式(Adapter)
返回目录 之前和大家一起谈了工厂模式和单例模式,今天来看一下另一种非常常用的模式,它就是适配器模式,第一次看到这个模式是通过“张逸”老师的“设计之道”这篇文章,在这里表adapter讲的很透彻,今天把 ...
- CakeDC(cakephp company)Git workflow--适合于较大团队大型项目开发
CakeDC Git workflow是一个项目开发和版本发布的工作流,在这个工作流程中开发和版本发布周期是基于几个关键阶段(key phases): Development: 所有活跃的开发活动都由 ...
- Raspberry Pi Kernel Compilation 内核编译官方文档
elinux.org/Raspberry_Pi_Kernel_Compilation#Use_the_provided_compiler Software & Distributions: S ...
- 1027. Colors in Mars (20) PAT
题目:http://pat.zju.edu.cn/contests/pat-a-practise/1027 简单题,考察十进制数和n进制数的转换和输出格式的控制. People in Mars rep ...
- PHP 使用用户自定义的比较函数对数组中的值进行排序
原文:PHP 使用用户自定义的比较函数对数组中的值进行排序 usort (PHP 4, PHP 5) usort — 使用用户自定义的比较函数对数组中的值进行排序 说明 bool ...
- libevent源码阅读笔记(一):libevent对epoll的封装
title: libevent源码阅读笔记(一):libevent对epoll的封装 最近开始阅读网络库libevent的源码,阅读源码之前,大致看了张亮写的几篇博文(libevent源码深度剖析 h ...
- RPi Kernel Compilation
Overview This page explains how to rebuild the kernel image for the RPi. There are two possible rout ...
随机推荐
- 权限管理系统之项目框架搭建并集成日志、mybatis和分页
前一篇博客中使用LayUI实现了列表页面和编辑页面的显示交互,但列表页面table渲染的数据是固定数据,本篇博客主要是将固定数据变成数据库数据. 一.项目框架 首先要解决的是项目框架问题,搭建什么样的 ...
- Could not load file or assembly 'System.ValueTuple'
项目目标框架:.Net Framework 4.6.2 报错:Could not load file or assembly 'System.ValueTuple' 在4.6.2项目中,想要使用C#7 ...
- Java开发笔记(七十七)使用Optional规避空指针异常
前面在介绍清单用法的时候,讲到了既能使用for循环遍历清单,也能通过stream流式加工清单.譬如从一个苹果清单中挑选出红苹果清单,采取for循环和流式处理都可以实现.下面是通过for循环挑出红苹果清 ...
- 零基础学Python--------第5章 字符串及正则表达式
第5章 字符串及正则表达式 5.1 字符串常用操作 在Python开发过程中,为了实现某项功能,经常需要对某些字符串进行特殊处理,如拼接字符串.截取字符串.格式化字符串等.下面将对Python中常用的 ...
- java-初识Properties
1.通过代码了解一哈: package com.etc; import java.io.File; import java.io.FileInputStream; import java.io.Fil ...
- #WEB安全基础 : HTML/CSS | 0x8.1CSS继承
CSS的一大特性——继承,怎么样没听说过吧,没了它我们修饰网页时就变得十足的麻烦 这是本节课准备的文件 这是others文件夹 先看看index.html,代码如下 <!DOCTYPE ...
- Emmet 简介
Emmet 简介 Intro 什么是 Emmet? Emmet is a plugin for many popular text editors which greatly improves HTM ...
- WordCount
一.Gitee地址:https://gitee.com/zjgss99/WordCount 二.项目分析: 对程序设计语言源文件统计字符数.单词数.行数,统计结果以指定格式输出到默认文件中,以及其他扩 ...
- MongoDB在已有账号的实例下还原数据库报错的分析(error applying oplog)
一. 背景 今天在MongoDB 4.0.4版本下,在还原恢复数据库时报错. 主要错误为: Failed: restore error: error applying oplog: applyOps: ...
- javaweb学习--javabean
阅读电子书<Java Web从入门到精通>密码:461c,学习JavaWeb基础知识 JavaBean类似于.net的实体类,但是规则上稍复杂一些,能实现的功能也多一些 一.介绍 1.规则 ...