Surjectivity is stable under base change
Nowadays, I close a new small case.
Proposition. For a surjective morphism between scheme $X\stackrel{f}\to Y$, For any $Z\to Y$, the base change $X\times_Y Z\to Z$ is also surjective.
The diagram is as following
$$\begin{array}{ccc} X\times_Y Z& \to & Z\\ \downarrow && \downarrow \\ Z& \to & Y\\\end{array}$$
In the first place, we will reduce the proposition into affine case.Since the proof involves some essential computation of tensor product, I will deal with secondly. At the end of the post, I will close the proof.
First Step (reduce to affine case). We will prove a more stronger statement,
For any $z\in Z$, let $y\in Y$ be its image, if there exists $x\in X$ such that $f(x)=y$, then exists $w\in X\times_Y Z$ mapsto $y$.
Take an affine set $\operatorname{Spec}A, \operatorname{Spec}B, \operatorname{Spec}C$ of $x,y,z$ such that the image of $\operatorname{Spec} A$ and $\operatorname{Spec} C$ is in $\operatorname{Spec} B$. So the problem reduce to the following statement.
Let $A\stackrel{\varphi}\leftarrow B\stackrel{\psi}\to C$ be ring homomorphisms, and primes $\mathfrak{p}, \mathfrak{r}$ of $A,C$ respectively, such that $\mathfrak{q}=\varphi^{-1}(\mathfrak{p})=\psi^{-1}(\mathfrak{r})$. Then there exists a prime $\mathfrak{s}$ of $A\otimes_B C$, such $\mathfrak{r}$ is the inverse image of $\mathfrak{s}$.
$$\begin{array}{ccc} A\otimes_B C& \leftarrow & A\\ \uparrow && \uparrow \\ C& \leftarrow & B \\ \end{array}\qquad \begin{array}{ccc} \mathfrak{s}& \mapsto & \mathfrak{p}\\ \overline{\downarrow} && \overline{\downarrow} \\ \mathfrak{r}& \mapsto & \mathfrak{q} \\ \end{array} $$
Second Step (some computation of tensor product). We show the following
Consider the tensor product of $k$-algebra $R_1\otimes_k R_2$. For a mutiplitive subset $S$ of $R_1$, one have $$S^{-1}(R_1\otimes_k R_2)=S^{-1} R_1\otimes_{\overline{S}^{-1}k} \overline{S}^{-1} R_2$$Where $\overline{S}\subseteq k$ is the inverse image of $S$, and $k$ is not necessary to be a field.
The proof is nothing but check the structure of tensor product. More precisely, $S^{-1}(R_1\otimes_kR_2)=S^{-1}R_1\otimes_{R_1}R_1\otimes_k R_2 =S^{-1}R_1 \otimes_kR_2$ and $$\begin{cases} \frac{r_1}{s}\otimes \frac{r_2}{s'} = \frac{r_1}{ss'}s'\otimes \frac{r_2}{s'}=\frac{r_1}{ss'}\otimes s'\frac{r_2}{s'}=\frac{r_1}{ss'}\otimes r_2\\\frac{r_1}{s_1}\frac{k}{s}\otimes \frac{r_2}{s_2}=\frac{r_1}{s_1}\frac{k}{s}\otimes s\frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}k\otimes \frac{1}{s}\frac{r_2}{s_2}=\frac{r_1}{s_1}\otimes \frac{k}{s}\frac{r_2}{s_2}\end{cases}$$
Third Step (finish the proof). By the second step, we can assume $B, C$ to be local ring. Then it reduces to whether $A\otimes_B C \otimes C/\mathfrak{r}=0$. We have know that $A\otimes_B B/\mathfrak{q}\neq 0$ by the assumption on $\mathfrak{q}$. One have $$A\otimes_B C\otimes_C C/\mathfrak{r}=\underbrace{A\otimes_B B/\mathfrak{q}}_{\neq 0}\otimes_{B/\mathfrak{q}}\otimes C/\mathfrak{r}$$But now, $B/\mathfrak{q}$ and $C/\mathfrak{r}$ is field, thus, it is not zero either, the proof is complete.
Appendix (The fiber of $y\in Y$ in the morphism $X \to Y$ is $X\times_Y k(y)$). We only need to prove the affine case. Let $B\stackrel{\varphi}\to A$ be the associated ring homomorphism, given a prime $\mathfrak{q}$ of $B$, one have $$\begin{array}{rl}f^{-1}(\mathfrak{q})& = \{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})=\mathfrak{q}\} \\ & =\{\textrm{prime } \mathfrak{p}\subseteq A: \varphi^{-1}(\mathfrak{p})\subseteq \mathfrak{q}, \varphi(\mathfrak{q})\subseteq \mathfrak{p} \}\\ & \cong \{\textrm{prime } \mathfrak{p}\subseteq A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}}\} \\ & \cong \operatorname{Spec} (A_\mathfrak{q}/\varphi(\mathfrak{q})A_{\mathfrak{q}})=\operatorname{Spec}( A\otimes_B B_\mathfrak{q}/\mathfrak{q}B_{\mathfrak{q}})=\operatorname{Spec} (A\otimes_B k(\mathfrak{q}))\end{array}$$Where $k(\mathfrak{q})=\operatorname{Frac} B/\mathfrak{q}=B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$ is the residual field of the point $\mathfrak{q}$.

Surjectivity is stable under base change的更多相关文章
- 关于CI/CD/CD (Continuous Integration/Continuous Delivery/Continuous Deployment)
Continuous Integration (CI) Continuous integration (CI) is the process that ensures the stability of ...
- C++ Core Guidelines
C++ Core Guidelines September 9, 2015 Editors: Bjarne Stroustrup Herb Sutter This document is a very ...
- 说说设计模式~适配器模式(Adapter)
返回目录 之前和大家一起谈了工厂模式和单例模式,今天来看一下另一种非常常用的模式,它就是适配器模式,第一次看到这个模式是通过“张逸”老师的“设计之道”这篇文章,在这里表adapter讲的很透彻,今天把 ...
- CakeDC(cakephp company)Git workflow--适合于较大团队大型项目开发
CakeDC Git workflow是一个项目开发和版本发布的工作流,在这个工作流程中开发和版本发布周期是基于几个关键阶段(key phases): Development: 所有活跃的开发活动都由 ...
- Raspberry Pi Kernel Compilation 内核编译官方文档
elinux.org/Raspberry_Pi_Kernel_Compilation#Use_the_provided_compiler Software & Distributions: S ...
- 1027. Colors in Mars (20) PAT
题目:http://pat.zju.edu.cn/contests/pat-a-practise/1027 简单题,考察十进制数和n进制数的转换和输出格式的控制. People in Mars rep ...
- PHP 使用用户自定义的比较函数对数组中的值进行排序
原文:PHP 使用用户自定义的比较函数对数组中的值进行排序 usort (PHP 4, PHP 5) usort — 使用用户自定义的比较函数对数组中的值进行排序 说明 bool ...
- libevent源码阅读笔记(一):libevent对epoll的封装
title: libevent源码阅读笔记(一):libevent对epoll的封装 最近开始阅读网络库libevent的源码,阅读源码之前,大致看了张亮写的几篇博文(libevent源码深度剖析 h ...
- RPi Kernel Compilation
Overview This page explains how to rebuild the kernel image for the RPi. There are two possible rout ...
随机推荐
- HAProxy负载均衡技术
软件负载均衡一般通过两种方式来实现:基于操作系统的软负载实现和基于第三方应用的软负载实现.LVS就是基于Linux操作系统实现的一种软负载,HAProxy就是开源的并且基于第三应用实现的软负载. HA ...
- Mysql 主键如何实现持久化
自增主键没有持久化是个比较早的bug,这点从其在官方bug网站的id号也可看出(https://bugs.mysql.com/bug.php?id=199) 首先,我们可以直观的重现如下. mysql ...
- 配置多个 git 账号的 ssh密钥
背景 在工作中,我们通常会以 ssh 的方式配置公司的 git 账号,但是平时也会使用 github 管理自己的项目.因此,我们需要为自己的 github 创建一个新的 git 账号,这就需要生成新的 ...
- 经典面试题:浏览器是怎样解析CSS的?
摘要: 理解浏览器原理. 解析 一旦 CSS 被浏览器下载,CSS 解析器就会被打开来处理它遇到的任何 CSS.这可以是单个文档内的 CSS.<style>标记内的 CSS,也可以是 DO ...
- 当input框输入到限定长度时,自动focus下一个input框
需求背景 需要输入一串15位的数字,但是要分为3个输入框,每个输入框限定长度5位,当删除当前输入框的内容时,focus到上一个输入框: 实现方法 var field = $('.phone-fiel ...
- HTML的概念和三大基石以及标准文档结构
HTML的概念: 概念: HTML:超文本标记语言 作用: 需要将java在后台根据用户请求处理的请求结果在浏览器中显示给用户. 在浏览器中数据需要使用友好的格式展示给用户. HTML是告诉浏 ...
- C++语法小技巧
前言 写的很乱,各种内容都有.仅仅是为了记录一下 而且内容极其不严谨(没错,只有实践,没有理论)!请各位谨慎驾驶! 强制内联 #define Inline __inline__ __attribute ...
- 一句话总结K均值算法
一句话总结K均值算法 核心:把样本分配到离它最近的类中心所属的类,类中心由属于这个类的所有样本确定. k均值算法是一种无监督的聚类算法.算法将每个样本分配到离它最近的那个类中心所代表的类,而类中心的确 ...
- 编写高性能.NET程序-《Concurrency in .NET》(1)- 为什么要读这本书?
最近广州.NET微软技术俱乐部对如何编写高性能.NET程序发起了讨论. 首先是在ORM和SQL方面进行了讨论,主题当然是经久不衰的月经贴: EF性能很差. Edi.Wang专门写了一篇文章< ...
- matlab练习程序(渲染三原色)
这里我用的空间是x向右为正,y向下为正,z向屏幕里面为正.相当于标准右手系绕x轴旋转了180度. 将三个点光源放在 r = [0.3,0,0.5];g = [0.3,-0.5*cos(pi/6),-0 ...