题目链接:http://poj.org/problem?id=3517

And Then There Was One
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5014   Accepted: 2685

Description

Let’s play a stone removing game.

Initially, n stones are arranged on a circle and numbered 1, …, n clockwise (Figure 1). You are also given two numbers k and m. From this state, remove stones one by one following the rules explained below, until only one remains. In step 1, remove stone m. In step 2, locate the k-th next stone clockwise from m and remove it. In subsequent steps, start from the slot of the stone removed in the last step, make k hops clockwise on the remaining stones and remove the one you reach. In other words, skip (k − 1) remaining stones clockwise and remove the next one. Repeat this until only one stone is left and answer its number. For example, the answer for the case n = 8, k = 5, m = 3 is 1, as shown in Figure 1.


Initial state

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Final state
 

Figure 1: An example game

Initial state: Eight stones are arranged on a circle.

Step 1: Stone 3 is removed since m = 3.

Step 2: You start from the slot that was occupied by stone 3. You skip four stones 4, 5, 6 and 7 (since k = 5), and remove the next one, which is 8.

Step 3: You skip stones 1, 2, 4 and 5, and thus remove 6. Note that you only count stones that are still on the circle and ignore those already removed. Stone 3 is ignored in this case.

Steps 4–7: You continue until only one stone is left. Notice that in later steps when only a few stones remain, the same stone may be skipped multiple times. For example, stones 1 and 4 are skipped twice in step 7.

Final State: Finally, only one stone, 1, is on the circle. This is the final state, so the answer is 1.

Input

The input consists of multiple datasets each of which is formatted as follows.

n k m

The last dataset is followed by a line containing three zeros. Numbers in a line are separated by a single space. A dataset satisfies the following conditions.

2 ≤ n ≤ 10000, 1 ≤ k ≤ 10000, 1 ≤ m ≤ n

The number of datasets is less than 100.

Output

For each dataset, output a line containing the stone number left in the final state. No extra characters such as spaces should appear in the output.

Sample Input

8 5 3
100 9999 98
10000 10000 10000
0 0 0

Sample Output

1
93
2019 题意:n个数排成一个圈,第一次删除m以后每次数到k个数删除一次,求最后一个被杉树的数
题解:是约瑟夫环问题的变形,距离上次学习约瑟夫环有一定时间了,上次不理解,这次理解递推的数学过程了:
当第n次,第f(n)个人出局了的时候剩下的n-1个人就构成了一个新的约瑟夫环问题,那么现在如果知道了第n-1次是第f(n-1)个人出局了,那么反着想,但是转化的时候是要从k+1个人开始计数,那么相当是吧k+1-->0;
k+2-->1.......所以在要想知道了f(n-1)想求f(n)就要用f(n) = [k+1+f(n-1)]%n;现在好了递归函数出来了那么就可以写一个普通约瑟夫环的代码:
 #include<cstdio>
using namespace std;
int main()
{
int n,m,i,s = ;
printf("N M =");//n个数,每次数m个数出列
scanf("%d%d",&n,&m);
for(i = ; i <= n; i++)
{
s = (s + m) % i;
}
printf("\n The winner is %d\n",s+);
}


这个题,要注意是从m开始计数的,但是由于递归的时候每次操作都是f(n) = (f(n-1)+k)%n;

但是实际上第一次的时候是删除掉了第m个数,而且编号是从1开始编号的,所以正常的将最后一组重新编号的时候f`(n) = [f(n-1)+m+1]%n; 所以最后答案应该是f`(n) = (m-k+1+f(n))%n;

ac代码:

 #include<cstdio>
using namespace std;
const int maxn = ;
int f[maxn]; int main()
{
int n, k, m;
while(~scanf("%d%d%d",&n,&k,&m)){
if(n==) return ;
f[] = ;
for(int i = ; i <= n; i++)f[i] = (f[i-]+k)%i;
int ans = (m-k++f[n])%n;
if(ans<=) ans+=n;//必须注意边界情况因为最后出现了-k所以要考虑负数的情况
printf("%d\n",ans);
}
return ;
}
 

And Then There Was One(约瑟夫问题变形)的更多相关文章

  1. 【约瑟夫环变形】UVa 1394 - And Then There Was One

    首先看到这题脑子里立刻跳出链表..后来继续看如家的分析说,链表法时间复杂度为O(n*k),肯定会TLE,自己才意识到果然自个儿又头脑简单了 T^T. 看如家的分析没怎么看懂,后来发现这篇自己理解起来更 ...

  2. HDU 5643 King's Game | 约瑟夫环变形

    经典约瑟夫环 }; ; i<=n; i++) { f[i] = (f[i-] + k) % i; } 变形:k是变化的 #include <iostream> #include &l ...

  3. Poj 3517 And Then There Was One(约瑟夫环变形)

    简单说一下约瑟夫环:约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个 ...

  4. poj 1012 &amp; hdu 1443 Joseph(约瑟夫环变形)

    题目链接: POJ  1012: id=1012">http://poj.org/problem?id=1012 HDU 1443: pid=1443">http:// ...

  5. F - System Overload(约瑟夫环变形)

    Description Recently you must have experienced that when too many people use the BBS simultaneously, ...

  6. G - And Then There Was One (约瑟夫环变形)

    Description Let’s play a stone removing game. Initially, n stones are arranged on a circle and numbe ...

  7. UVA1452|LA4727-----Jump------经典的约瑟夫公式的变形(DP)

    本文出自:http://blog.csdn.net/dr5459 题目地址: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&a ...

  8. poj 1091 跳蚤

    跳蚤 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8482   Accepted: 2514 Description Z城 ...

  9. 2016 Multi-University Training Contest 10

    solved 7/11 2016 Multi-University Training Contest 10 题解链接 分类讨论 1001 Median(BH) 题意: 有长度为n排好序的序列,给两段子 ...

随机推荐

  1. C++ 头文件系列(iomanip)

    1. 简介 该头文件定义了一些参数化的操纵器(manipulatators),注意ios头文件也定义了一些. 2. maniapulators 2.1 C++98 resetiosflags : 重置 ...

  2. Wincc的使用

    1.组态项目步骤 1)启动Wincc 2)建立项目 3)选择及安装通信驱动程序 4)定义变量 5)建立和编辑过程画面 6)指定Wincc运行系统的属性 7)激活Wincc画面 8)使用变量模拟器测试过 ...

  3. 506. Relative Ranks

    Given scores of N athletes, find their relative ranks and the people with the top three highest scor ...

  4. node学习心得

    此次学习主要使用的是基于nodejs平台的web应用开发框架. 一.express的工程结构 1.bin/www:express的执行入口,存放可执行文件: 2.node_modules:存放pack ...

  5. C#常用单词

    C#语言需要的一些英语注释 About -----关于 abstract -----抽象的 Abstract ------抽象的 Accept -----接受 activat -----活跃 add  ...

  6. java之自动过滤提交文本中的html代码script代码

    public class test { public static String Html2Text(String inputString) { String htmlStr = inputStrin ...

  7. node基础篇二:模块、路由、全局变量课堂(持续)

    今天继续更新node基础篇,今天主要内容是模块.路由和全局变量. 模块这个概念,在很多语言中都有,现在模块开发已经成为了一种潮流,它能够帮助我们节省很多的时间,当然咱们的node自然也不能缺少,看下例 ...

  8. Java_Date_02_截断日期到日

    oracle 的 trunc 函数能很方便的将日期截断.现在有个需求,需要用java实现与 oracle 的 trunc 函数 相同的功能. 1.需求:将日期截断到日 即 将格式为 2018-01-0 ...

  9. [HNOI2008]Cards

    题目描述 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案. 进一步,小春要求染出Sr张红色,Sb张蓝 ...

  10. VIM常见用法总结

    欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...