题目大意:一个$N\times N$的阵列,每个格子有$X_{ij}$个调和之音,若每次只能选择走右边或下边,从左上角出发走到右下角,问最多能收集到多少个调和之音?
 
      这题是一道很很很简单的DP题,但可能之前没接触过的同学需要一点脑能量去思考。。如果用最蠢的办法,循环枚举每种选择,求出最大值的话,由于你总共需要往右走$N-1$次,往下走$N-1$次,路径总长度为$2N-2$,根据组合数学,总共有$C_{2N-2}^{N-1}$种走法,想想$C_{1998}^{999}$会是一个多么可怕的数字,不用说这铁定是会超时的,而且铁定会超到地老天荒。怎么办呢?
 
      有的同学可能会考虑:能不能用贪心算法做呢?即每次只有两个选择,我每次都选择最大的那个,那么最终得到的结果是否在整体上是最大的呢?很遗憾这是错的,因为你每次只能往右或往下走,走当前的最大步无法证明走过最小步后,不会产生一条更大的路径。以上两种方案详细的分析参见51Nod - 动态规划入门篇 - 矩阵取数问题(注意先注册登录)。
 
      因此这题非DP不可了,考虑当前格子$X_{ij}$,它要么从$X_{i-1,j}$走过来,要么从$X_{i,j-1}$走过来,因此我只需要做两次循环,给每个格子判断一下从左边来的值更大,还是从上边来的值更大,然后跟这个格子的值相加,这样对于每个格子来说,它的值一定是从左上角到这个格子的最大值。在读入数据的时候就可以计算了。时间复杂度$O(N^2)$,空间复杂度$O(N^2)$。
 #include <stdio.h>

 inline int max(int&a, int&b) {
return a>b?a:b;
} int T, N, mat[][];
int main() {
scanf("%d", &T);
while(T--) {
scanf("%d", &N);
for(int i=; i<=N; i++)
for(int j=; j<=N; j++) {
scanf("%d", mat[i]+j);
mat[i][j]+=max(mat[i-][j], mat[i][j-]);
}
printf("%d\n", mat[N][N]);
}
return ;
}
 
      然后我们再想想,空间复杂度$O(N^2)$其实是没必要哒!因为给每个格子判断只会用到它左边和上边的格子,也就是说只需要保存上一行就行了,判断完这一行的格子就可以覆盖掉了,上两行以上根本没必要保留,因为我们只要求最大值,不是求产生的最大值的路径,因此没必要保存下来(这是ACM中的滚动数组技术)。于是空间复杂度愉快地降到了$O(N)$。
 #include <stdio.h>

 inline int max(int&a, int&b) {
return a>b?a:b;
} int T, N, mat[], x;
int main() {
scanf("%d", &T);
while(T--) {
scanf("%d", &N);
for(int i=; i<=N; i++)
mat[i]=;
for(int i=; i<=N; i++)
for(int j=; j<=N; j++) {
scanf("%d", &x);
mat[j]=max(mat[j-], mat[j])+x;
}
printf("%d\n", mat[N]);
}
return ;
}
 
      比较遗憾的是,现场没有多少人能够做出来这道简单DP题,如果模仿去年新生赛决赛其中一题的难度,即求到终点对某个数$P$取模的最大值的话,估计会更惨。。。。

——by BlackStorm, from herehttp://www.cnblogs.com/BlackStorm/p/5043638.html .

SCNU 2015ACM新生赛决赛【F. Oyk闯机关】解题报告的更多相关文章

  1. SCNU 2015ACM新生赛初赛【1007. ZLM的扑克牌】解题报告

            题目链接详见SCNU 2015新生网络赛 1007. ZLM的扑克牌 .         其实我在想这题的时候,还想过要不要设置求最小的排列,并且对于回文数字的话,可以把扑克牌折起来( ...

  2. SCNU 2015ACM新生赛初赛【1006. 3D打印】解题报告

            题目链接详见SCNU 2015新生网络赛 1006. 3D打印 .出题思路来自codevs 3288. 积木大赛,属于模拟题.         首先我们把“选择从第L部分到第R部分”理 ...

  3. SCNU 2015ACM新生赛初赛【1001~1011】个人解题思路

            题目1001:       大意:已知$n$个角色,$m$种怪物种族,$k$个怪物,给出一组角色编号,编号$P_{i}$的角色能肝死编号$i$的怪物,对于给定的一组怪物编号,为了打通关 ...

  4. SCNU ACM 2016新生赛决赛 解题报告

    新生初赛题目.解题思路.参考代码一览 A. 拒绝虐狗 Problem Description CZJ 去排队打饭的时候看到前面有几对情侣秀恩爱,作为单身狗的 CZJ 表示很难受. 现在给出一个字符串代 ...

  5. 2021广东工业大学新生赛决赛 L-歪脖子树下的灯

    题目:L-歪脖子树下的灯_2021年广东工业大学第11届腾讯杯新生程序设计竞赛(同步赛) (nowcoder.com) 比赛的时候没往dp这方面想(因为之前初赛和月赛数学题太多了啊),因此只往组合数学 ...

  6. 2013级新生程序设计基础竞赛-正式赛 F 异或最大值 解题报告

    F - 异或最大值 Time Limit: 2000/1000MS (Java/Others)      Memory Limit: 128000/64000KB (Java/Others) Subm ...

  7. 安徽师大附中%你赛day6 T3 Hamsters [POI2010]CHO-Hamsters 解题报告

    [POI2010]CHO-Hamsters 题意: 给出n个互不包含的字符串,要求你求出一个最短的字符串S,使得这n个字符串在S中总共至少出现m次,问S最短是多少? 范围: \(1 \le n \le ...

  8. 【HHHOJ】ZJOI2019模拟赛(十三)03.10 解题报告

    点此进入比赛 得分: \(97+0+10=107\) 排名: \(Rank\ 3\) \(Rating\):\(+47\) \(T1\):[HHHOJ187]Hashit(点此看题面) 容易想到可以用 ...

  9. 【HHHOJ】NOIP2018 模拟赛(二十五) 解题报告

    点此进入比赛 得分: \(100+100+20=220\)(\(T1\)打了两个小时,以至于\(T3\)没时间打了,无奈交暴力) 排名: \(Rank\ 8\) \(Rating\):\(+19\) ...

随机推荐

  1. 使用 Ghost 写博客

    今天在https://ghost.org/上试用了一会,发现这是一个出色的博客平台,相比WordPress,更轻量级,而且是使用Node.js来做的,性能也是非常的不错. 优点 轻量级 支持主题 支持 ...

  2. ERROR 1010 (HY000): Error dropping database (can't rmdir './test/', errno: 17)

    在删除数据库的时候报标题所示错误 mysql> drop database test; ERROR (HY000): Error dropping database (can't rmdir ' ...

  3. 使用ViewPager实现自动轮播

    很多APP中都实现了类似引导页的自动轮播,不由得想到昨天的引导页上修改一下代码实现轮播. 其实大体上只需要添加一个线程循环执行就可以了. 项目已同步至:https://github.com/nanch ...

  4. Python(五)模块

    本章内容: 模块介绍 time & datetime random os sys json & picle hashlib XML requests ConfigParser logg ...

  5. Hive读取外表数据时跳过文件行首和行尾

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 有时候用hive读取外表数据时,比如csv这种类型的,需要跳过行首或者行尾一些和数据无关的或者自 ...

  6. iOS: 在iPhone和Apple Watch之间共享数据: App Groups

    我们可以在iPhone和Apple Watch间通过app groups来共享数据.方法如下: 首先要在dev center添加一个新的 app group: 接下来创建一个新的single view ...

  7. 关于Java语言中那些修饰符

    一.在java中提供的一些修饰符,这些修饰符可以修饰类.变量和方法,在java中常见的修饰符有:abstract(抽象的).static(静态的).public(公共的).protected(受保护的 ...

  8. web 开发自动化grunt

    现在web开发自动化已很流行,如何进行压缩文件,如何进行测试js是否正确,如何进行 检测html文件是否规范等等都可以通过web自动化技术进行实现,只要打一个命令即可. 本文主要是通过grunt进行实 ...

  9. 【WPF】ChartControl的使用

    一.前言       本月正好做一些关于工程4D,5D的界面展示,正好要用到Dev控件中的ChartControl控件,也就是图表控件. 折腾了两星期完成了一个比较能说的过去的界面吧.(领导要求高,可 ...

  10. AutoResetEvent ManualResetEvent WaitOne使用注意事项

    公司还用这些老家伙没办法,用了几次这俩.每次用都要重新翻一下A片. 好好的A片楞是翻译成了禅经.把这东西弄成个玄学.微软也是吃枣药丸.参考了@风中灵药的blog.写的牛逼. 还有一些公司用到的风中灵药 ...