Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

分析:

动态规划的经典题目,设dp[i][j]表示从位置[0,0]到[i,j]的最小路径和,要到达位置[i,j]只能从[i,j-1]或[i-1,j]向右或向下走一步到达,

所以状态转移方程为:

dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];

由二维dp进一步优化为一维dp:

当j=0时,dp[j]=dp[j]+grid[i][j];

当0<j&&j<n时,dp[j]=min(dp[j],dp[j-1])+grid[i][j];

(此时的dp[j]等价于二维dp中的dp[i][j])

参考代码:

public class Solution {
public int minPathSum(int[][] grid) {
int nlen=grid.length;
int mlen=grid[0].length;
int dp[]=new int[mlen];
dp[0]=grid[0][0];
for(int j=1;j<mlen;j++){
dp[j]=dp[j-1]+grid[0][j];
}
for(int i=1;i<nlen;i++){
for(int j=0;j<mlen;j++){
dp[j]=grid[i][j]+(j==0?(dp[j]):(Math.min(dp[j-1], dp[j])));
}
}
return dp[mlen-1];
}
}

LeetCode-Minimum Path Sum[dp]的更多相关文章

  1. LeetCode: Minimum Path Sum 解题报告

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  2. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  3. LeetCode Minimum Path Sum (简单DP)

    题意: 给一个n*m的矩阵,每次可以往下或右走,经过的格子中的数字之和就是答案了,答案最小为多少? 思路: 比较水,只是各种空间利用率而已. 如果可以在原空间上作修改. class Solution ...

  4. [LeetCode] Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  5. Leetcode Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  6. [leetcode]Minimum Path Sum @ Python

    原题地址:https://oj.leetcode.com/problems/minimum-path-sum/ 题意: Given a m x n grid filled with non-negat ...

  7. LeetCode:Minimum Path Sum(网格最大路径和)

    题目链接 Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right ...

  8. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  9. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  10. 【leetcode】Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

随机推荐

  1. (转)微信禁用右上角的分享按钮,WeixinJSBridge API以及隐藏分享的子按钮等菜单项

    <!--禁用微信分享按钮--> <script> function onBridgeReady() { WeixinJSBridge.call('hideOptionMenu' ...

  2. 进程控制fork与vfork

    1. 进程标识符 在前面进程描述一章节里已经介绍过进程的两个基本标识符pid和ppid,现在将详细介绍进程的其他标识符. 每个进程都有非负的整形表示唯一的进程ID.一个进程终止后,其进程ID就可以再次 ...

  3. Deep Q-Network 学习笔记(二)—— Q-Learning与神经网络结合使用(有代码实现)

    参考资料: https://morvanzhou.github.io/ 非常感谢莫烦老师的教程 http://mnemstudio.org/path-finding-q-learning-tutori ...

  4. php追加数组

    <?php //追加数组 array_merge_recursive()函数与array_merge()相同,可以将两个或多个数组合并在一起,形成一个联合的数组.两者之间的区别在于,当某个输入数 ...

  5. mysql show processlist

  6. Streaming结合Kafka

    Spark2.11 两种流操作 + Kafka Spark2.x 自从引入了 Structured Streaming 后,未来数据操作将逐步转化到 DataFrame/DataSet,以下将介绍 S ...

  7. 【Android Developers Training】 91. 解决云储存冲突

    注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...

  8. JavaScript函数部分

    函数部分学习:+parseInt(): -parseInt()函数将其收到的任何输入值(通常是字符串)转换成整数类型输出,如果转换失败就返回NaN. -parseInt(“参数”,第二参数基数):没有 ...

  9. MySQL(二)--事务与视图

    一.事务 1.提交 2.回滚 3.ACID特性 二.视图 1.创建视图 2.删除视图 3.更新视图 4.使用视图 三.子查询 1. 使用子查询 2. 标量子查询 3. 关联子查询 一.事务 在 RDB ...

  10. 多个Tomcat 配置多个JDK