1、pickle模块

python持久化的存储数据:

python程序运行中得到了一些字符串,列表,字典等数据,想要长久的保存下来,方便以后使用,而不是简单的放入内存中关机断电就丢失数据。python模块大全中pickle模块就排上用场了, 他可以将对象转换为一种可以传输或存储的格式。

pickle模块将任意一个python对象转换成一系统字节的这个操作过程叫做串行化对象。

python的pickle模块实现了python的所有数据序列和反序列化。基本上功能使用和JSON模块没有太大区别,方法也同样是dumps/dump和loads/load。cPickle是pickle模块的C语言编译版本相对速度更快。

与JSON不同的是pickle不是用于多种语言间的数据传输,它仅作为python对象的持久化或者python程序间进行互相传输对象的方法,因此它支持了python所有的数据类型。

import pickle

data2 = [1,2,3,4]
det_str = pickle.dumps(data2)
print(det_str) #output: 输出为二进制格式
b'\x80\x03]q\x00(K\x01K\x02K\x03K\x04e.' #将数据序列化后存储到文件中
f = open('test.txt','wb') #pickle只能以二进制格式存储数据到文件
data = {'k1':'python','k2':'java'}
f.write(pickle.dumps(data)) #dumps序列化源数据后写入文件
f.close() #反序列化读取源数据
import pickle
f = open('test.txt','rb')
da = pickle.loads(f.read()) #使用loads反序列化
print(da)

dumps和dump,load和loads的区别:

dumps是将对象序列化

dump是将对象序列化并保存到文件中

loads将序列化字符串反序列化

load将序列化字符串从文件读取并反序列化

import pickle

data1 = [1,'a',2,'b',3,'c']
pi = pickle.dumps(data1) #序列化对象
print(pi)
print(pickle.loads(pi)) #反序列化对象 f = open('test1.txt','wb')
data2 = ['py','th','on',123]
pickle.dump(data2,f) #序列化对象到文件
f = open('test1.txt','rb')
red = pickle.load(f) #从文件中反序列化对象
print(red)

2、json模块

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。它基于ECMAScript的一个子集。 JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C、C++、Java、JavaScript、Perl、Python等)。这些特性使JSON成为理想的数据交换语言。易于人阅读和编写,同时也易于机器解析和生成(一般用于提升网络传输速率)。

json.dump(obj,fp,*,skipkeys = False,ensure_ascii = True,check_circular = True,indent = None,separators = None,default = None,sort_keys = False,** kw)

将obj对象格式化并存储到文件对象中,文件必须为可写的文件句柄,json只产生str对象,不支持bytes对象,所以fp.write()必须支持str输入

skipkeys如果为True,对象的基本类型必须是str,int,float,bool,None

ensure_ascii=True,如果为true则所以传入的非ASCII字符都被转义,如果为false则字符将原样输出

check_circular=True,如果为true容器类型的循环引用检查将被跳过

indent=None,表示数组元素和对象将按指定的值缩进,可以是整数或字符串如'\t'

sort_keys=False,如果为True字典的输出将按键排序

import json

data=[{'k1':'v1','k2':'v2'},{'k3':'v3','k4':'k4'},{'k6':'v6','k5':'k5'}]

with open('test.txt','w') as pf:
json.dump(data,pf,indent=2,sort_keys=True)
pf.close() #output
[
{
"k1": "v1",
"k2": "v2"
},
{
"k3": "v3",
"k4": "k4"
},
{
"k5": "k5",
"k6": "v6"
}
]

json.dumps(obj,*,skipkeys = False,ensure_ascii = True,check_circular = True,indent = None,separators = None,default = None,sort_keys = False,** kw)

将obj对象格式化为str对象,参数含义和dump相同

import json
data=[{'k1':'v1','k2':'v2'},{'k3':'v3','k4':'k4'},{'k6':'v6','k5':'k5'}] pi = json.dumps(data,indent=2,sort_keys=True)
print(type(pi))
print(pi)
p2=json.loads(pi)
print(type(p2))
print(p2) #
<class 'str'>
[
{
"k1": "v1",
"k2": "v2"
},
{
"k3": "v3",
"k4": "k4"
},
{
"k5": "k5",
"k6": "v6"
}
]
<class 'list'>
[{'k1': 'v1', 'k2': 'v2'}, {'k3': 'v3', 'k4': 'k4'}, {'k5': 'k5', 'k6': 'v6'}]

json.load(fp,*,cls=None,object_hook=None,parse_float=None,parse_int=None,parse_constant=None,object_pairs_hook=None,**kw)

将文件对象反序列化为python对象,选项参数用来指定类型解码,在python3.6中fp可以使用二进制文件

import json

with open('test.txt','rb') as fp:
data1=json.load(fp)
print(type(data1))
print(data1) #
<class 'list'>
[{'k1': 'v1', 'k2': 'v2'}, {'k3': 'v3', 'k4': 'k4'}, {'k5': 'k5', 'k6': 'v6'}]

json.loads(s,*,encoding=None,cls=None,object_hook=None,parse_float=None,parse_int=None,parse_constant=None,object_pairs_hook=None,**kw)

将json文档的实例反序列化为python对象,参数含义同load()相同

import json
with open('test.txt','rb') as fp:
data1=json.loads(fp.read())
print(type(data1))
print(data1)

3、json与pickle模块的区别

1、JSON只能处理基本数据类型。pickle能处理所有Python的数据类型。

2、JSON用于各种语言之间的字符转换。pickle用于Python程序对象的持久化或者Python程序间对象网络传输,但不同版本的Python序列化可能还有差异。

4、shelve模块

shelve与pickle类似用来持久化数据的,不过shelve是以键值对的形式,将内存中的数据通过文件持久化,值支持任何pickle支持的python数据格式,它会在目录下生成三个文件。

>>> import shelve
>>> import tab
>>> s = shelve.open('test_s.db') #创建shelve并打开
>>> s['k1']={'int':10,'float':8.8,'string':'python'} #写入数据
>>> s.close() #关闭文件
>>> s = shelve.open('test_s.db') #打开文件
>>> print(s['k1']) #访问shelve中的数据
{'float': 8.8, 'string': 'python', 'int': 10}
>>> print(s['k1']['int'])
10
>>> s.close()

对于存储的key,value值,只能添加key,value,可修改整个value,不能单独修改列表或字典中的元素

>>> s = shelve.open('test_s.db',flag='r')
>>> print(s['k1'])
{'float': 8.8, 'string': 'python', 'int': 10}
>>> s['k2']=[1,2,3] #添加数据
>>> print(s['k2'])
[1, 2, 3]
>>> s['k2'][0]=99 #修改存储的value的单个值时不生效也不报错
>>> print(s['k2'])
[1, 2, 3]
>>> s.close() >>> s = shelve.open('test_s.db',flag='c')
>>> s.keys()
KeysView(<shelve.DbfilenameShelf object at 0x7fd4770f1850>)
>>> len(s)
2
>>> s['k2']=(33,44) #可以修改key的value
>>> print(s)
<shelve.DbfilenameShelf object at 0x7fd4770f1850>
>>> print(s['k2'])
(33, 44)

写回(write-back)由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

上面这个例子中,由于一开始我们使用了缺省参数shelve.open()了,因此修改的值即使我们s.close()也不会被保存。

所以当我们试图让shelve去自动捕获对象的变化,我们应该在打开shelf的时候将writeback设置为True。当我们将writeback这个flag设置为True以后,shelf将会将所有从DB中读取的对象存放到一个内存缓存。当我们close()打开的shelf的时候,缓存中所有的对象会被重新写入DB。

>>> s = shelve.open('test_s.db',writeback=True)  #使用回写功能打开
>>> print(s['k1']) #初始值
{'float': 8.8, 'string': 'python', 'int': 10}
>>> print(s['k2'])
(33, 44)
>>> s['k1']['float']='99.99' #修改字典中的元素
>>> print(s['k1']) #成功修改
{'float': '99.99', 'string': 'python', 'int': 10}

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

>>> print(s['k1'])
{'float': '99.99', 'string': 'python', 'int': 10}
>>> s['k1']['list']=[1,2,3]
>>> s['k1']['tuple']=(4,5,6)
>>> s['k1']['dic']={'a':123,'b':456}
>>> print(s['k1'])
{'dic': {'b': 456, 'a': 123}, 'int': 10, 'float': '99.99', 'string': 'python', 'tuple': (4, 5, 6), 'list': [1, 2, 3]}

python3之序列化(pickle&json&shelve)的更多相关文章

  1. 第二十二天- 序列化 pickle json shelve

    # 序列化:存储或传输数据时,把对象处理成方便存储和传输的数据格式,这个过程即为序列化# Python中序列化的三种方案:# 1.pickle python任意数据——>bytes写入⽂件:写好 ...

  2. 序列化 pickle & json & shelve

    把内存数据转成字符,叫序列化,dump,dumps 把字符转成内存数据类型,叫反序列化load,loads dumps:仅转成字符串 dump不仅能把对象转换成str,还能直接存到文件内 json.d ...

  3. python模块--pickle&json&shelve

    使用file文件处理时,写入的必须是str ,否则会报错. 例如:要把一个字典写入文件,写入时会报错 ,就算转换成str格式写入,读取的时候也不能按照dict格式读. >>> inf ...

  4. Python:序列化 pickle JSON

    序列化 在程序运行的过程中,所有的变量都储存在内存中,例如定义一个dict d=dict(name='Bob',age=20,score=88) 可以随时修改变量,比如把name修改为'Bill',但 ...

  5. python序列化之pickle,json,shelve

    模块 支持方法 说明 json dumps/dump loads/load 只能处理基本数据类型: 用于多种语言间的数据传输: pickle dumps/dump loads/load 支持pytho ...

  6. day21 pickle json shelve configpaser 模块

    1. 序列化:我们在网络传输的时候,需要我们对对象进行处理,把对象处理成方便存储和传输的格式,这个过程就叫序列化 序列化的方法不一定一样,三十目的都是为了方便储存和传输. 在python中有三种序列化 ...

  7. python之路 序列化 pickle,json

    运行代码,毫不留情地得到一个TypeError: Traceback (most recent call last): ... TypeError: <__main__.Student obje ...

  8. Python第十四天 序列化 pickle模块 cPickle模块 JSON模块 API的两种格式

    Python第十四天 序列化  pickle模块  cPickle模块  JSON模块  API的两种格式 目录 Pycharm使用技巧(转载) Python第一天  安装  shell  文件 Py ...

  9. 序列化模块— json模块,pickle模块,shelve模块

    json模块 pickle模块 shelve模块 序列化——将原本的字典.列表等内容转换成一个字符串的过程就叫做序列化. # 序列化模块 # 数据类型转化成字符串的过程就是序列化 # 为了方便存储和网 ...

随机推荐

  1. 关于系统首页绘制问题(ext布局+c#后台加入数据)经html输出流输出响应client

    关于系统首页绘制问题,业务需求 TODO 绘制系统首页(Main.aspx) 採用的技术:functioncharts+jquery+ext布局+c#+html 解说篇:1,服务端aspx,2,服务端 ...

  2. Android实战简易教程-第三十四枪(基于ViewPager和FragmentPagerAdapter实现滑动通用Tab)

    上一段时间写过一篇文章<基于ViewPager实现微信页面切换效果> 里面实现了相似微信Tab的页面.可是这样的实现方法有个问题.就是以后全部的代码逻辑都必须在MainActivity中实 ...

  3. One-Based Arithmetic

    One-Based Arithmetic time limit per test 0.5 seconds memory limit per test 256 megabytes input stand ...

  4. ajax接受json响应(讲义)

    l 什么是json? l Json和xml比较 l Ajax如何使用JSON l Ajax接收json响应案例 什么是json? JSON (JavaScript Object Notation) 是 ...

  5. java与数据库

    工具:mysql: java eclipse,phpstudy. 以MySQL为例 java连接MySQL可能你在度娘的帮助下,又设置环境变量又改这改那的,结果还是没有连接成功. 今天我来分享一下不需 ...

  6. Lucene实现索引和查询

    0引言 随着万维网的发展和大数据时代的到来,每天都有大量的数字化信息在生产.存储.传递和转化,如何从大量的信息中以一定的方式找到满足自己需求的信息,使之有序化并加以利用成为一大难题.全文检索技术是现如 ...

  7. lograted日志切割脚本

    root@op-testsetup-web3.idc1.yiducloud.cn:/etc/logrotate.d# cat etcd /home/work/docker/logs/etcd/prev ...

  8. (转载)Eclipse将引用了第三方jar包的Java项目打包成可执行jar的两种方法

    转载自:http://www.cnblogs.com/lanxuezaipiao/p/3291641.html 方案一:用Eclipse自带的Export功能 步骤1:准备主清单文件 "MA ...

  9. bash shell快捷键[转]

    生活在 Bash shell 中,熟记以下快捷键,将极大的提高你的命令行操作效率. 编辑命令 Ctrl + a :移到命令行首 Ctrl + e :移到命令行尾 Ctrl + f :按字符前移(右向) ...

  10. 正则表达式 cheat sheet