GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5106    Accepted Submission(s): 1833

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5106    Accepted Submission(s): 1833

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
 
 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <vector>
using namespace std;
vector<int>q[];
long long a[]={};
int bb;
void init()
{
int i,j;
for(i=; i<; i++)a[i]=i,q[i].clear();
for(i=; i<; i+=)
a[i]/=,q[i].push_back();
for(i=; i<; i+=)
if(a[i]==i)
for(j=i; j<; j+=i)
a[j]=a[j]/i*(i-),q[j].push_back(i);
for(i=; i<; i++)
a[i]+=a[i-];
}
int fun(int x,int y)
{
int i,cnt=;
int sum=;
for(i=;i<q[y].size();i++)
{
if(x&(<<i))
{
sum*=q[y][i];
cnt++;
}
}
if(cnt&)
return bb/sum;
else return -(bb/sum);
}
long long work(int x)
{
int i;
long long sum=;
for(i=;i<(<<q[x].size());i++)
{
sum+=fun(i,x);
}
return bb-sum;
}
int main()
{
init();
int i,t,j,aa,c,d,k;
long long ans;
scanf("%d",&t);
for(i=; i<=t; i++)
{
scanf("%d%d%d%d%d",&aa,&bb,&c,&d,&k);
if(bb>d)swap(bb,d);
if(k)
bb/=k,d/=k;
else
{
printf("Case %d: %d\n",i,);
continue;
}
ans=a[bb];
for(j=bb+; j<=d; j++)
{
ans+=work(j);
}
printf("Case %d: %I64d\n",i,ans);
}
}

GCD hdu1695容斥原理的更多相关文章

  1. HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...

  2. ACM学习历程—HDU1695 GCD(容斥原理 || 莫比乌斯)

    Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = ...

  3. HDU 1695 GCD (容斥原理+欧拉函数)

    题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...

  4. 2018.06.29 NOIP模拟 Gcd(容斥原理)

    Gcd 题目背景 SOURCE:NOIP2015-SHY-2 题目描述 给出n个正整数,放入数组 a 里. 问有多少组方案,使得我从 n 个数里取出一个子集,这个子集的 gcd 不为 1 ,然后我再从 ...

  5. 51 Nod 1678 lyk与gcd(容斥原理)

    1678 lyk与gcd  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作 ...

  6. HDU 4947 GCD Array 容斥原理+树状数组

    GCD Array Time Limit: 11000/5500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  7. hdu1695 容斥原理 莫比乌斯反演

    给定两个数b,d,问[1,b]和[1,d]区间上有多少对互质的数.(x,y)和(y,x)算一个. 对于[1,b]部分,用欧拉函数直接求.对于大于b的部分,求n在[1,b]上有多少个互质的数,用容斥原理 ...

  8. 【bzoj4305】数列的GCD 组合数学+容斥原理

    题目描述 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N).  现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], ..., ...

  9. HDU1695(容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. [2014-08-24]为 Xamarin Studio 创建的 Asp.Net Mvc 项目配置 gitignore

    今天在尝试 Mac 下使用 Xamarin Studio (以下简称XS) 开发 Asp.Net Mvc 项目,发现XS没启用版本控制,故自己去命令行下使用 git init,想到需要一个.gitig ...

  2. LVS-NAT搭建HTTP及HTTPS

    author:JevonWei 版权声明:原创作品 搭建NAT模式的HTTP环境 网络拓扑图如下 网络环境 RS1 192.168.198.138 RS2 192.168.198.120 LVS: D ...

  3. Spring中的线程池和定时任务功能

    1.功能介绍 Spring框架提供了线程池和定时任务执行的抽象接口:TaskExecutor和TaskScheduler来支持异步执行任务和定时执行任务功能.同时使用框架自己定义的抽象接口来屏蔽掉底层 ...

  4. 交换基本数据类型的方法swap,并影响到主方法

    不知道朋友在哪里看到的问题,qq来问我,题目是:在不修改主方法的前提下使用一个方法交换两个int的值,方法如下: public static void main(String[] args) { In ...

  5. Linux修改文件permission属性

    列出文件属性 ls -al 修改文件属性为可读.可写 sudo chmod -c 777 <your file name>

  6. Apache配置虚拟域名

    在作php本地调试的时候,一般都要打上localhost/,如果你的项目层级关系比较多,那你的url地址就会很长. 那我们能不能用一个简短的域名去替代那些一长串无用的字符呢? 那可能有人会问如果我没有 ...

  7. ★10 个实用技巧,让Finder带你飞~

    10 个实用技巧,让 Finder 带你飞 Finder 是 Mac 电脑的系统程序,有的功能类似 Windows 的资源管理器.它是我们打开 Mac 首先见到的「笑脸」,有了它,我们可以组织和使用 ...

  8. 转:Java IO流学习总结

    Java流操作有关的类或接口: Java流类图结构: 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在两设备间的传输称为流,流的本质是数据传输,根据数据传输 ...

  9. 验证Oracle收集统计信息参数granularity数据分析的力度

    最近在学习Oracle的统计信息这一块,收集统计信息的方法如下: DBMS_STATS.GATHER_TABLE_STATS ( ownname VARCHAR2, ---所有者名字 tabname ...

  10. 201521123052《Java程序设计》第7周学习总结

    1. 本周学习总结 参考资料: XMind 2. 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 public boolean contains(Ob ...