POJ 1952 BUY LOW, BUY LOWER
$dp$。
一开始想了一个$dp$做法,$dp[i][j]$表示前$i$个数字,下降序列长度为$j$的方案数为$dp[i][j]$,这样做需要先离散化然后用树状数组优化,空间复杂度为${n^2}$,时间复杂度为$O({n^2}\log n)$,这样的做法被$POJ$卡了内存。既然是$MLE$,然后我去$discuss$测了一下数据,发现答案都是对的。
$MLE$:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
} const int maxn=;
int f[maxn][maxn],h[maxn][maxn],n,a[maxn],b[maxn];
int c[maxn][maxn];
int pre[(<<)+]; int get(int x)
{
int L=,R=n,res;
while(L<=R)
{
int mid=(L+R)/;
if(b[mid]<x) L=mid+;
else if(b[mid]==x) res=mid,L=mid+;
else R=mid-;
}
return res;
} int lowbit(int x){return x&(-x);} int sum(int p,int x)
{
int res=;
for(int i=x;i>;i=i-lowbit(i)) res=res+c[p][i];
return res;
} void update(int p,int x,int val)
{
for(int i=x;i<=;i=i+lowbit(i)) c[p][i]=c[p][i]+val;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b++n); for(int i=;i<=n;i++) a[i]=get(a[i]); memset(h,,sizeof h); memset(c,,sizeof c);
memset(f,,sizeof f);
memset(pre,,sizeof pre); h[][]=; f[][]=; update(,,); for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++) h[i][j]=sum(j-,)-sum(j-,a[i]);
int p=pre[a[i]];
for(int j=;j<=n;j++) f[i][j]=h[i][j]-h[p][j];
for(int j=;j<=n;j++) update(j,a[i],f[i][j]);
pre[a[i]]=i;
}
for(int j=n;j>=;j--)
{
int ans=;
for(int i=;i<=n;i++) ans=ans+f[i][j];
if(ans==) continue;
else
{
printf("%d %d\n",j,ans);
break;
}
} return ;
}
事实上,上述做法中很多信息都是冗余的,我们只需记录到$i$位置的最长下降序列的长度$f[i]$以及方案数$g[i]$就可以了。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
} const int maxn=;
int n,a[maxn],f[maxn],g[maxn]; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]); for(int i=;i<=n;i++)
{
f[i]=; g[i]=; bool flag=;
for(int j=i-;j>=;j--)
{
if(a[j]<a[i]) continue;
if(a[j]==a[i])
{
if(flag==) g[i]=;
break;
}
else if(a[j]>a[i])
{
flag=;
if(f[j]+>f[i]) f[i]=f[j]+,g[i]=g[j];
else if(f[j]+==f[i]) g[i]=g[i]+g[j];
}
}
} int ans=; for(int i=;i<=n;i++) ans=max(ans,f[i]);
int ans2=; for(int i=;i<=n;i++) if(f[i]==ans) ans2=ans2+g[i];
printf("%d %d\n",ans,ans2); return ;
}
POJ 1952 BUY LOW, BUY LOWER的更多相关文章
- POJ 1952 BUY LOW, BUY LOWER 动态规划题解
Description The advice to "buy low" is half the formula to success in the bovine stock mar ...
- USACO Section 4.3 Buy low,Buy lower(LIS)
第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...
- POJ-1952 BUY LOW, BUY LOWER(线性DP)
BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...
- USACO 4.3 Buy Low, Buy Lower
Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...
- poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】
BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions:11148 Accepted: 392 ...
- 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower
P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...
- [POJ1952]BUY LOW, BUY LOWER
题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...
- Buy Low, Buy Lower
Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...
- BUY LOW, BUY LOWER_最长下降子序列
Description The advice to "buy low" is half the formula to success in the bovine stock mar ...
随机推荐
- c/c++中typedef详解
1. typedef 最简单使用 typedef long byte_4; // 给已知数据类型long起个新名字,叫byte_4 你可以在任何需要 long 的上下文中使用 byte_4.注意 ty ...
- Day2:T4求逆序对(树状数组+归并排序)
T4: 求逆序对 A[I]为前缀和 推导 (A[J]-A[I])/(J-I)>=M A[j]-A[I]>=M(J-I) A[J]-M*J>=A[I]-M*I 设B[]=A[]-M*( ...
- DSP TMS320C6000基础学习(4)—— cmd文件分析
DSP中的CMD文件是链接命令文件(Linker Command File),以.cmd为后缀. 在分析cmd文件之前,必需先了解 (1)DSP具体芯片的内存映射(Memory Map) (2)知道点 ...
- arcengine 实现调用arctoolbox中的dissolove
ESRI.ArcGIS.Geoprocessor.Geoprocessor geoprocessor = new Geoprocessor(); ESRI.ArcGIS.DataManagementT ...
- 微信移动支付V3开发详细教程服务端采用.net mvc webapi(C#)
转自:http://www.kwstu.com/ArticleView/netmvc_201511132050268716 最近开发手机app需要实现移动支付功能,由于考虑支付安全将微信支付生成签名写 ...
- 获取Portal中POWL程序的APPLID
获取Portal中POWL程序的APPLID 今天做练习的时候跟 Leader 学了一招,当不知道集成在 Portal 中 POWL 程序的 APPLID 的时候,可以在类 CL_POWL_MODEL ...
- ASP.NET基础之HttpModule学习
最近学习WCF知识时看到有关IIS版本的知识,发现对HttpContext,HttpModule,HttpHandler的内容都不是很了解,这三个也是ASP.NET相对基础的内容,晚上特地花点时间针对 ...
- Web Host下的URL路由
Web Host下的URL路由 ASP.NET Web API提供了一个独立于执行环境的抽象化的HTTP请求处理管道,而ASP.NET Web API自身的路由系统也不依赖于ASP.NET路由系统,所 ...
- Android开发中与服务器交互时,遇到java.io.IOException: Target host must not be null的问题
当我遇到这个问题的时候,也在网上查找好半天.找到了一个和这个问题很类似的问题——java.lang.IllegalStateException: Target host must not be nul ...
- Sql Server (错误:7302)
windows server 2008 x64 sql server 2008 r2 OraClient 11g 错误提示: 解决办法: