POJ 1952 BUY LOW, BUY LOWER
$dp$。
一开始想了一个$dp$做法,$dp[i][j]$表示前$i$个数字,下降序列长度为$j$的方案数为$dp[i][j]$,这样做需要先离散化然后用树状数组优化,空间复杂度为${n^2}$,时间复杂度为$O({n^2}\log n)$,这样的做法被$POJ$卡了内存。既然是$MLE$,然后我去$discuss$测了一下数据,发现答案都是对的。
$MLE$:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
} const int maxn=;
int f[maxn][maxn],h[maxn][maxn],n,a[maxn],b[maxn];
int c[maxn][maxn];
int pre[(<<)+]; int get(int x)
{
int L=,R=n,res;
while(L<=R)
{
int mid=(L+R)/;
if(b[mid]<x) L=mid+;
else if(b[mid]==x) res=mid,L=mid+;
else R=mid-;
}
return res;
} int lowbit(int x){return x&(-x);} int sum(int p,int x)
{
int res=;
for(int i=x;i>;i=i-lowbit(i)) res=res+c[p][i];
return res;
} void update(int p,int x,int val)
{
for(int i=x;i<=;i=i+lowbit(i)) c[p][i]=c[p][i]+val;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b++n); for(int i=;i<=n;i++) a[i]=get(a[i]); memset(h,,sizeof h); memset(c,,sizeof c);
memset(f,,sizeof f);
memset(pre,,sizeof pre); h[][]=; f[][]=; update(,,); for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++) h[i][j]=sum(j-,)-sum(j-,a[i]);
int p=pre[a[i]];
for(int j=;j<=n;j++) f[i][j]=h[i][j]-h[p][j];
for(int j=;j<=n;j++) update(j,a[i],f[i][j]);
pre[a[i]]=i;
}
for(int j=n;j>=;j--)
{
int ans=;
for(int i=;i<=n;i++) ans=ans+f[i][j];
if(ans==) continue;
else
{
printf("%d %d\n",j,ans);
break;
}
} return ;
}
事实上,上述做法中很多信息都是冗余的,我们只需记录到$i$位置的最长下降序列的长度$f[i]$以及方案数$g[i]$就可以了。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
} const int maxn=;
int n,a[maxn],f[maxn],g[maxn]; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]); for(int i=;i<=n;i++)
{
f[i]=; g[i]=; bool flag=;
for(int j=i-;j>=;j--)
{
if(a[j]<a[i]) continue;
if(a[j]==a[i])
{
if(flag==) g[i]=;
break;
}
else if(a[j]>a[i])
{
flag=;
if(f[j]+>f[i]) f[i]=f[j]+,g[i]=g[j];
else if(f[j]+==f[i]) g[i]=g[i]+g[j];
}
}
} int ans=; for(int i=;i<=n;i++) ans=max(ans,f[i]);
int ans2=; for(int i=;i<=n;i++) if(f[i]==ans) ans2=ans2+g[i];
printf("%d %d\n",ans,ans2); return ;
}
POJ 1952 BUY LOW, BUY LOWER的更多相关文章
- POJ 1952 BUY LOW, BUY LOWER 动态规划题解
Description The advice to "buy low" is half the formula to success in the bovine stock mar ...
- USACO Section 4.3 Buy low,Buy lower(LIS)
第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...
- POJ-1952 BUY LOW, BUY LOWER(线性DP)
BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...
- USACO 4.3 Buy Low, Buy Lower
Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...
- poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】
BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions:11148 Accepted: 392 ...
- 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower
P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...
- [POJ1952]BUY LOW, BUY LOWER
题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...
- Buy Low, Buy Lower
Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...
- BUY LOW, BUY LOWER_最长下降子序列
Description The advice to "buy low" is half the formula to success in the bovine stock mar ...
随机推荐
- UIWebView的探索
UIWebView 说到iOS的UIWebView,应该会很快回忆起常用委托方法,异步loadRequest.stopLoading.reload方法等. 在此我总结一些容易忽略的属性和方法: 1. ...
- jquery上传控件uploadify使用备忘
我简单修改了js和样式,效果如下 使用起来也是超简单,将文件下载并解压到你网站目录下,然后 .在使用位置插入代码 ============================= <iframe wi ...
- Bootstrap3.0学习第六轮(表单)
Bootstrap3.0学习第六轮(表单) 前言 阅读之前您也可以到Bootstrap3.0入门学习系列导航中进行查看http://www.cnblogs.com/aehyok/p/3404867.h ...
- JVM内存划分
JVM内存划分吗? 前言: 大家都知道虚拟机,都知道JVM,其实这些都是基于sun公司[oracle公司]的HotSpot虚拟机,当然本篇博文也是以sun公司为基础.还有其他的虚拟机,常见的就有JRo ...
- Private和Protected方法
.NET中如何测试Private和Protected方法 TDD是1)写测试2)写通过这些测试的代码,3)然后重构的实践.在,NET社区中, 这个概念逐渐变得非常流行,这归功于它所增加的质量保证. ...
- SharePoint开发
做SharePoint开发有时候是一件比较痛苦的事情,毕竟庞大的框架总是笨重的~~ 往往如果采取传统的方式开发SharePoint的话,更改一个代码需要有以下操作: 1)更改代码 2)VS编译——&g ...
- [笔记] OS X and iOS 内核开发
一.KEXT包的安全性说明 KEXT 程序包及其包含的所有文件及文件夹必须属于 root 用户(用户 id 是 0) KEXT 程序包及其包含的所有文件及文件夹必须属于 wheel 组(组 id 是 ...
- 运用Unity结合PolicyInjection实现拦截器
运用Unity结合PolicyInjection实现拦截器[结合操作日志实例] 上一篇文章我们通过Unity自身Unity.InterceptionExtension.IInterceptionBeh ...
- Linux Wine with *.bat *.exe ( Photoshop and etc.. )
Firtly all you need is to install wine on your computer. Mine is ubuntu 12.04 which is running KDE o ...
- TensorFlow 入门之手写识别(MNIST) softmax算法
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...