给n个数,m个询问, 问任意区间内与其它数互质的数有多少个

比如3个数1 2 4,询问[1,3] 那么答案是1

千万要记住,这样的题目,如果你不转变下,使劲往线段树想(虽然转变之后,也说要用到线段树,但是维护的东西不同了),那么会发现这样的题目,区间与区间之间是无法传递信息的,

区间与区间是无法传递信息的,区间与区间之间是无法传递信息的,重要的东西说三遍。

设n个数,存在数组a[]里面

我们预处理出,L[],和R[],L[i] 表示从i往左,第一个与a[i]不互质的数的位置+1,  R[i]表示从i往右,第一个与a[i]不互质的数的位置-1

即L[i] 表示 [L[i],i]内的所有数都与a[i]互质,R[i]表示[i,R[i]]内的所有数都与a[i]互质

然后我们离线处理,将所有的询问按照左端点排序

然后枚举左端点i,将所有L[j] = i的 [j,R[j]]区间+1,因为当左端点为i时,L[j]=i的数都在各自的有效区间[j,R[j]]里面生效了

当i=询问的区间的左端点时,只要查询右端点被加了多少次就行了。

走过i时,第i个数不再生效,所以将[i,R[i]]区间-1

 #include<cstdio>
#include<iostream>
#include<string.h>
#include<algorithm>
#include <vector>
using namespace std;
const int N = + ;
vector<int> prime[N];
vector<int> cL[N];
int a[N],L[N],R[N];
int mark[N];
int tree[N<<],lazy[N<<];
int ans[N];
void pushDown(int rt)
{
if(lazy[rt])
{
lazy[rt<<] += lazy[rt];
lazy[rt<<|] += lazy[rt];
tree[rt<<] += lazy[rt];
tree[rt<<|] += lazy[rt];
lazy[rt] = ;
}
}
void update(int l, int r, int rt, int L, int R, int val)
{
if(L<=l && R>=r)
{
lazy[rt]+=val;
tree[rt] += val;
return;
}
pushDown(rt);
int mid = (l+r)>>;
if(L<=mid)
update(l,mid,rt<<,L,R,val);
if(R>mid)
update(mid+,r,rt<<|,L,R,val); }
int query(int l, int r, int rt, int pos)
{
if(l==r)
{
return tree[rt];
}
pushDown(rt);
int mid = (l+r)>>;
if(pos<=mid)
return query(l,mid,rt<<,pos);
else
return query(mid+,r,rt<<|,pos);
}
struct Node
{
int l,r,id;
bool operator<(const Node&rhs)const
{
return l < rhs.l;
}
}q[N]; void getPrime()
{
for(int i=;i<=;++i)
{
if(!mark[i])
for(int j=i;j<=;j+=i)
{
mark[j] = true;
prime[j].push_back(i);//得到j的所有素数因子i
}
}
}
void init(int n)
{
memset(mark,,sizeof(mark));
for(int i=; i<prime[a[]].size(); ++i)
mark[prime[a[]][i]] = ;
L[] = ;
cL[].push_back();
for(int i=;i<=n;++i)
{
int pos = ;
for(int j=; j<prime[a[i]].size(); ++j)
{
pos = max(pos,mark[prime[a[i]][j]]);
mark[prime[a[i]][j]] = i;
}
L[i] = pos + ;
cL[L[i]].push_back(i);
}
for(int i=;i<N;++i)mark[i] = n + ;
for(int i=;i<prime[a[n]].size(); ++i)
mark[prime[a[n]][i]] = n;
R[n] = n;
for(int i=n-;i>=;--i)
{
int pos = n + ;
for(int j=;j<prime[a[i]].size(); ++j)
{
pos = min(pos,mark[prime[a[i]][j]]);
mark[prime[a[i]][j]] = i;
}
R[i] = pos - ;
}
}
int main()
{
int n,m;
getPrime();
while(scanf("%d%d",&n,&m),n+m)
{
memset(tree,,sizeof(tree));
memset(lazy,,sizeof(lazy));
for(int i=;i<=n;++i)
{
scanf("%d",&a[i]);
cL[i].clear();
}
init(n);
for(int i=;i<m;++i)
{
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id = i;
}
sort(q,q+m);
int cur = ;
//枚举左端点
for(int i=;i<=n;++i)
{
//当左端点为i时,使得所有L[j] = i的数都在各自的区间[j,R[j]]
//所以在[j,R[j]]区间+1
for(int j=;j<cL[i].size(); ++j)
update(,n,,cL[i][j],R[cL[i][j]],);
//当询问的左端点为i时,
while(q[cur].l==i)
{
//只要询问右端点的值就行了,因为每个数都在自己能生效的区间里面+1了
ans[q[cur].id] = query(,n,,q[cur].r);
cur++;
}
//要走过第i个数了,所以第i个数不再生效了,所以将[i,R[i]]区间-1
update(,n,,i,R[i],-);
}
for(int i=;i<m;++i)
printf("%d\n",ans[i]);
}
return ;
}

hdu(预处理+线段树)的更多相关文章

  1. hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  2. hdu 3974 线段树 将树弄到区间上

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. hdu 3436 线段树 一顿操作

    Queue-jumpers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  4. hdu 3397 线段树双标记

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  5. hdu 4578 线段树(标记处理)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others) ...

  6. hdu 4533 线段树(问题转化+)

    威威猫系列故事——晒被子 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  7. hdu 2871 线段树(各种操作)

    Memory Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  8. hdu 4052 线段树扫描线、奇特处理

    Adding New Machine Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. hdu 1542 线段树扫描(面积)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

随机推荐

  1. Qt+gsoap调用WebService

    1.       前言 Qt本身给我们提供了调用WebService的解决方案qsoap,看了一下他的介绍,感觉实在是太弱了,而且又是个新出的东西,所以还是决定不用他.既然使用Qt,那当然是跨平台的解 ...

  2. VC/MFC 在ListCtl 控件中随鼠标移动提示单元格信息

    BEGIN_MESSAGE_MAP(CTipListCtrl, CListCtrl) //{{AFX_MSG_MAP(CTipListCtrl) ON_WM_MOUSEMOVE() ON_WM_DES ...

  3. &lt;ctype.h&gt; C语言标准库

    ctype.h是C标准函数库中的头文件,定义了一批C语言字符分类函数(C character classification functions),用于測试字符是否属于特定的字符类别.如字母字符.控制字 ...

  4. html中加入超链接方式的汇总

    在CSS样式中,对超链接的样式有以下几种定义(1)设置链接未被访问时的样式,具体写法如下:a:link{font-size:10px;... }(2)设置链接在鼠标经过时的样式,具体写法如下:a:ho ...

  5. anthelion编译

    编程工程 $ cd ./anthelion/anthelion/target/classes$ java -Xmx15G -cp ../Anthelion-1.0.0-jar-with-depende ...

  6. NEU 1173: 这是物理学的奇迹!! 分解质数

    1173: 这是物理学的奇迹!! 题目描述 goagain在做物理电学实验时需要一个2Ω的电阻,但是他发现他的实验台上只剩下了3Ω,4Ω,5Ω,6Ω的电阻若干,于是goagain把两个4Ω的电阻并联起 ...

  7. Android开发周报:Android L默认加密用户数据

    Android开发周报:Android L默认加密用户数据 新闻 <iCloud前车之鉴,Android L默认开启加密功能>:iCloud 艳照风波再起,第二波女星照片流出,大量女星的裸 ...

  8. UVAlive 2519 Radar Installation (区间选点问题)

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. ...

  9. 在qt中用tcp传输xml消息

    在qt中用tcp传输xml消息 本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明. 环境: 主机:WIN7 开发环境:Qt5 3.1.2 说明: 在tcp上 ...

  10. POJ 3267-The Cow Lexicon(DP)

    The Cow Lexicon Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8252   Accepted: 3888 D ...