给n个数,m个询问, 问任意区间内与其它数互质的数有多少个

比如3个数1 2 4,询问[1,3] 那么答案是1

千万要记住,这样的题目,如果你不转变下,使劲往线段树想(虽然转变之后,也说要用到线段树,但是维护的东西不同了),那么会发现这样的题目,区间与区间之间是无法传递信息的,

区间与区间是无法传递信息的,区间与区间之间是无法传递信息的,重要的东西说三遍。

设n个数,存在数组a[]里面

我们预处理出,L[],和R[],L[i] 表示从i往左,第一个与a[i]不互质的数的位置+1,  R[i]表示从i往右,第一个与a[i]不互质的数的位置-1

即L[i] 表示 [L[i],i]内的所有数都与a[i]互质,R[i]表示[i,R[i]]内的所有数都与a[i]互质

然后我们离线处理,将所有的询问按照左端点排序

然后枚举左端点i,将所有L[j] = i的 [j,R[j]]区间+1,因为当左端点为i时,L[j]=i的数都在各自的有效区间[j,R[j]]里面生效了

当i=询问的区间的左端点时,只要查询右端点被加了多少次就行了。

走过i时,第i个数不再生效,所以将[i,R[i]]区间-1

 #include<cstdio>
#include<iostream>
#include<string.h>
#include<algorithm>
#include <vector>
using namespace std;
const int N = + ;
vector<int> prime[N];
vector<int> cL[N];
int a[N],L[N],R[N];
int mark[N];
int tree[N<<],lazy[N<<];
int ans[N];
void pushDown(int rt)
{
if(lazy[rt])
{
lazy[rt<<] += lazy[rt];
lazy[rt<<|] += lazy[rt];
tree[rt<<] += lazy[rt];
tree[rt<<|] += lazy[rt];
lazy[rt] = ;
}
}
void update(int l, int r, int rt, int L, int R, int val)
{
if(L<=l && R>=r)
{
lazy[rt]+=val;
tree[rt] += val;
return;
}
pushDown(rt);
int mid = (l+r)>>;
if(L<=mid)
update(l,mid,rt<<,L,R,val);
if(R>mid)
update(mid+,r,rt<<|,L,R,val); }
int query(int l, int r, int rt, int pos)
{
if(l==r)
{
return tree[rt];
}
pushDown(rt);
int mid = (l+r)>>;
if(pos<=mid)
return query(l,mid,rt<<,pos);
else
return query(mid+,r,rt<<|,pos);
}
struct Node
{
int l,r,id;
bool operator<(const Node&rhs)const
{
return l < rhs.l;
}
}q[N]; void getPrime()
{
for(int i=;i<=;++i)
{
if(!mark[i])
for(int j=i;j<=;j+=i)
{
mark[j] = true;
prime[j].push_back(i);//得到j的所有素数因子i
}
}
}
void init(int n)
{
memset(mark,,sizeof(mark));
for(int i=; i<prime[a[]].size(); ++i)
mark[prime[a[]][i]] = ;
L[] = ;
cL[].push_back();
for(int i=;i<=n;++i)
{
int pos = ;
for(int j=; j<prime[a[i]].size(); ++j)
{
pos = max(pos,mark[prime[a[i]][j]]);
mark[prime[a[i]][j]] = i;
}
L[i] = pos + ;
cL[L[i]].push_back(i);
}
for(int i=;i<N;++i)mark[i] = n + ;
for(int i=;i<prime[a[n]].size(); ++i)
mark[prime[a[n]][i]] = n;
R[n] = n;
for(int i=n-;i>=;--i)
{
int pos = n + ;
for(int j=;j<prime[a[i]].size(); ++j)
{
pos = min(pos,mark[prime[a[i]][j]]);
mark[prime[a[i]][j]] = i;
}
R[i] = pos - ;
}
}
int main()
{
int n,m;
getPrime();
while(scanf("%d%d",&n,&m),n+m)
{
memset(tree,,sizeof(tree));
memset(lazy,,sizeof(lazy));
for(int i=;i<=n;++i)
{
scanf("%d",&a[i]);
cL[i].clear();
}
init(n);
for(int i=;i<m;++i)
{
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id = i;
}
sort(q,q+m);
int cur = ;
//枚举左端点
for(int i=;i<=n;++i)
{
//当左端点为i时,使得所有L[j] = i的数都在各自的区间[j,R[j]]
//所以在[j,R[j]]区间+1
for(int j=;j<cL[i].size(); ++j)
update(,n,,cL[i][j],R[cL[i][j]],);
//当询问的左端点为i时,
while(q[cur].l==i)
{
//只要询问右端点的值就行了,因为每个数都在自己能生效的区间里面+1了
ans[q[cur].id] = query(,n,,q[cur].r);
cur++;
}
//要走过第i个数了,所以第i个数不再生效了,所以将[i,R[i]]区间-1
update(,n,,i,R[i],-);
}
for(int i=;i<m;++i)
printf("%d\n",ans[i]);
}
return ;
}

hdu(预处理+线段树)的更多相关文章

  1. hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  2. hdu 3974 线段树 将树弄到区间上

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. hdu 3436 线段树 一顿操作

    Queue-jumpers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  4. hdu 3397 线段树双标记

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  5. hdu 4578 线段树(标记处理)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others) ...

  6. hdu 4533 线段树(问题转化+)

    威威猫系列故事——晒被子 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  7. hdu 2871 线段树(各种操作)

    Memory Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  8. hdu 4052 线段树扫描线、奇特处理

    Adding New Machine Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. hdu 1542 线段树扫描(面积)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

随机推荐

  1. Nginx 訪问日志增长暴增出现尖刀的具体分析

    前言:          Nginx日志里面Mobileweb_access.log增长特别大.一天上百兆.将近100W的訪问记录.依照我们眼下的规模,热点用户才500个左右.就算人人用手机app訪问 ...

  2. adb 之android的神器am

    am命令,am全称activity manager,你能使用am去模拟各种系统的行为,例如去启动一个activity,强制停止进程,发送广播进程,修改设备屏幕属性等等 命令窗口通过adb shell ...

  3. android自定义实现抽屉SlidingDrawer的功能

    最近项目中需要实现上拉功能,首先想到的就是Android本身自带的抽屉SlidingDrawer,最后也实现了不过,出现的问题就是设置背景色问题,handler和content是两个不同的部分,这就造 ...

  4. Delphi 的绘图功能(29篇博客)

    http://www.cnblogs.com/del/category/123038.html

  5. SharePoint 内容部署-PowerShell

    1. 创建一个新的内容部署路径 New-SPContentDeploymentPath –Name "Marketing Internet Content" –SourceSPWe ...

  6. 搭建自己的XenServer+CloudStack云平台,提供IaaS服务(一)环境搭建

    目标 搭建一个完整的基于XenServer和CloudStack的虚拟化平台,提供IaaS服务. 搭建三台安装了XenServer的服务器 搭建一台安装了CloudStack的服务器用以管理云平台 搭 ...

  7. [置顶] C++为什么是C++而不是++C

    来自<C++ primer> 问:C++为什么是C++而不是++C 答 :C++之名是Rick Mascitti在1983年夏天定名,c说明它的本质实在C语言演化而来的,”++“是C语言的 ...

  8. Android----------WindowManager

    我们Android平台是一个又一个的Activity组成的,每个Activity有一个或者多个View构成.所以说.当我们想显示一个界面的时候,我们首先想到的是建立一个Activity,然后全部的操作 ...

  9. CentOS 7单用户模式修改root密码

    CentOS 7的单用户模式和6.5稍有不同 把ro改成 "rw init=/sysroot/bin/sh". 完成之后按 "Ctrl+x" chroot /s ...

  10. Deep Learning(深度学习) 学习笔记(四)

    神经概率语言模型,内容分为三块:问题,模型与准则,实验结果.[此节内容未完待续...] 1,语言模型问题 语言模型问题就是给定一个语言词典包括v个单词,对一个字串做出二元推断,推断其是否符合该语言表达 ...