Wednesday, October 26, 2016
Posted by Vincent Dumoulin*, Jonathon Shlens and Manjunath Kudlur, Google Brain Team

Pastiche. A French word, it designates a work of art that imitates the style of another one (not to be confused with its more humorous Greek cousin, parody). Although it has been used for a long time in visual art, music and literature, pastiche has been getting mass attention lately with online forums dedicated to images that have been modified to be in the style of famous paintings. Using a technique known as style transfer, these images are generated by phone or web apps that allow a user to render their favorite picture in the style of a well known work of art.

Although users have already produced gorgeous pastiches using the current technology, we feel that it could be made even more engaging. Right now, each painting is its own island, so to speak: the user provides a content image, selects an artistic style and gets a pastiche back. But what if one could combine many different styles, exploring unique mixtures of well known artists to create an entirely unique pastiche?

Learning a representation for artistic style

In our recent paper titled “A Learned Representation for Artistic Style”, we introduce a simple method to allow a single deep convolutional style transfer network to learn multiple styles at the same time. The network, having learned multiple styles, is able to do style interpolation, where the pastiche varies smoothly from one style to another. Our method enables style interpolation in real-time as well, allowing this to be applied not only to static images, but also videos.

 
Here is a video from YouTube. 
 
Credit: awesome dog role played by Google Brain team office dog Picabo.

In the video above, multiple styles are combined in real-time and the resulting style is applied using a single style transfer network. The user is provided with a set of 13 different painting styles and adjusts their relative strengths in the final style via sliders. In this demonstration, the user is an active participant in producing the pastiche.

A Quick History of Style Transfer

While transferring the style of one image to another has existed for nearly 15 years [1] [2], leveraging neural networks to accomplish it is both very recent and very fascinating. In “A Neural Algorithm of Artistic Style” [3], researchers Gatys, Ecker & Bethge introduced a method that uses deep convolutional neural network (CNN) classifiers. The pastiche image is found via optimization: the algorithm looks for an image which elicits the same kind of activations in the CNN’s lower layers - which capture the overall rough aesthetic of the style input (broad brushstrokes, cubist patterns, etc.) - yet produces activations in the higher layers - which capture the things that make the subject recognizable - that are close to those produced by the content image. From some starting point (e.g. random noise, or the content image itself), the pastiche image is progressively refined until these requirements are met.

Content image: The Tübingen Neckarfront by Andreas Praefcke, Style painting: “Head of a Clown”, by Georges Rouault.

The pastiches produced via this algorithm look spectacular:

Figure adapted from L. Gatys et al. "A Neural Algorithm of Artistic Style" (2015). 

This work is considered a breakthrough in the field of deep learning research because it provided the first proof of concept for neural network-based style transfer. Unfortunately this method for stylizing an individual image is computationally demanding. For instance, in the first demos available on the web, one would upload a photo to a server, and then still have plenty of time to go grab a cup of coffee before a result was available.

This process was sped up significantly by subsequent research [4, 5] that recognized that this optimization problem may be recast as an image transformation problem, where one wishes to apply a single, fixed painting style to an arbitrary content image (e.g. a photograph). The problem can then be solved by teaching a feed-forward, deep convolutional neural network to alter a corpus of content images to match the style of a painting. The goal of the trained network is two-fold: maintain the content of the original image while matching the visual style of the painting.

The end result of this was that what once took a few minutes for a single static image, could now be run real time (e.g. applying style transfer to a live video). However, the increase in speed that allowed real-time style transfer came with a cost - a given style transfer network is tied to the style of a single painting, losing some flexibility of the original algorithm, which was not tied to any one style. This means that to build a style transfer system capable of modeling 100 paintings, one has to train and store 100 separate style transfer networks.

Our Contribution: Learning and Combining Multiple Styles

We started from the observation that many artists from the impressionist period employ similar brush stroke techniques and color palettes. Furthermore, painting by say, Monet, are even more visually similar.

Poppy Field (left) and Impression, Sunrise (right) by Claude Monet. Images from Wikipedia

We leveraged this observation in our training of a machine learning system. That is, we trained a single system that is able to capture and generalize across many Monet paintings or even a diverse array of artists across genres. The pastiches produced are qualitatively comparable to those produced in previous work, while originating from the same style transfer network.

Pastiches produced by our single network, trained on 32 varied styles. These pastiches are qualitatively equivalent to those created by single-style networks: Image Credit: (from top to bottom) content photographs by Andreas PraefckeRich Niewiroski Jr. and J.-H. Janßen, (from left to right) style paintings by William GlackensPaul SignacGeorges RouaultEdvard Munch and Vincent van Gogh.
 

The technique we developed is simple to implement and is not memory intensive. Furthermore, our network, trained on several artistic styles, permits arbitrary combining multiple painting styles in real-time, as shown in the video above. Here are four styles being combined in different proportions on a photograph of Tübingen:

Unlike previous approaches to fast style transfer, we feel that this method of modeling multiple styles at the same time opens the door to exciting new ways for users to interact with style transfer algorithms, not only allowing the freedom to create new styles based on the mixture of several others, but to do it in real-time. Stay tuned for a future post on the Magenta blog, in which we will describe the algorithm in more detail and release the TensorFlow source code to run this model and demo yourself. We also recommend that you check out Nat & Lo’s fantastic video explanationon the subject of style transfer.

References

[1] Efros, Alexei A., and William T. Freeman. Image quilting for texture synthesis and transfer (2001).

[2] Hertzmann, Aaron, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin. Image analogies (2001).

[3] Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. A Neural Algorithm of Artistic Style(2015).

[4] Ulyanov, Dmitry, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky. Texture Networks: Feed-forward Synthesis of Textures and Stylized Images (2016).

[5] Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for Real-Time Style Transfer and Super-Resolution (2016).

 
 
 

(转) Supercharging Style Transfer的更多相关文章

  1. Image Style Transfer:多风格 TensorFlow 实现

    ·其实这是一个选修课的present,整理一下作为一篇博客,希望对你有用.讲解风格迁移的博客蛮多的,我就不过多的赘述了.讲一点几个关键的地方吧,当然最后的代码和ppt也希望对你有用. 1.引入: 风格 ...

  2. 项目总结四:神经风格迁移项目(Art generation with Neural Style Transfer)

    1.项目介绍 神经风格转换 (NST) 是深部学习中最有趣的技术之一.它合并两个图像, 即 内容图像 C(content image) 和 样式图像S(style image), 以生成图像 G(ge ...

  3. DeepLearning.ai-Week4-Deep Learning & Art: Neural Style Transfer

    1 - Task Implement the neural style transfer algorithm Generate novel artistic images using your alg ...

  4. 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer

    Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...

  5. Art: Neural Style Transfer

    Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...

  6. Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记

    Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记 ECCV 2 ...

  7. pytorch实现style transfer

    说是实现,其实并不是我自己实现的 亮出代码:https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/n ...

  8. fast neural style transfer图像风格迁移基于tensorflow实现

    引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...

  9. 《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》论文笔记

    参考 http://blog.csdn.net/u011534057/article/details/55052304 代码 https://github.com/yusuketomoto/chain ...

随机推荐

  1. python locust 性能测试:locust安装和一些参数介绍

    安装参考 https://www.cnblogs.com/fnng/p/6081798.html <虫师大大的,很详细> ps:python3.7暂不支持locust:python3安装建 ...

  2. Linux基础命令---ifcfg

    ifcfg ifcfg是一个简单的脚本替换iconfig命令,它可以设置网络接口的ip地址. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedo ...

  3. mongodb可视化工具 studio3t robo3T 下载安装使用介绍

    mongodb可视化工具 studio3t  robo3T 下载安装使用介绍 下载地址: https://studio3t.com/download robo3T

  4. js中的children实时获取子元素

    先看下面一个小例子的结果 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  5. Qt读取TXT文件时,GBK与UTF-8编码判断

    读取txt文件时,很多时候无法获取文件的编码格式.如果直接进行使用,则有可能出现乱码.需要在使用前将其转为Unicode(Qt的默认编码格式). 虽然实际的编码格式种类非常多,但平常主要使用的有GBK ...

  6. vue之component

    因为组件是可复用的 Vue 实例,所以它们与 new Vue 接收相同的选项,例如 data.computed.watch.methods 以及生命周期钩子等.仅有的例外是像 el 这样根实例特有的选 ...

  7. Wi-Fi Mesh网络技术

    Wi-Fi在很早的时候就引入了mesh技术,并且最近得到了越来越多的关注.谷歌.Eero.Linksys.Netgear以及几乎所有以家庭和小型办公室为目标的网络品牌都提供了mesh网格系统.但是也有 ...

  8. 怎样从外网访问内网SQLServer数据库?

    本地安装了一个SQLServer数据库,只能在局域网内访问到,怎样从外网也能访问到本地的SQLServer数据库呢?本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动SQLServer数据 ...

  9. Linux Centos 7.4 内核升级

    Linux Centos 7.4 内核升级 原始内核版本:3.10.0-693.2.2.el7.x86_64 升级内核版本:4.14.9-1.el7.elrepo.x86_64 1.导入key Key ...

  10. 基础_模型迁移_CBIR_augmentation

    在之前我们做过这样的研究:5图分类CBIR问题 各不相同的 5类的图形,每类100张 import numpy as npfrom keras.datasets import mnistimport  ...