lecture2-word2vec-七月在线nlp
离散表示:
one-hot
bag of words --
词权重 ~不能表示顺序关系
TF-IDF (Term Frequency - Inverse Document Frequency)
[0.693, 1.386, 0.693, 0.693, 1.099, 0, 0, 0, 0.693, 0.693]
词t的IDF weight N: 文档总数, nt: 含有词t的文档数
Binary weighting
[1, 1, 1, 1, 1, 0, 0, 0, 1, 1]不能表示顺序关系
Bi-gram和N-gram
Unigram/1-gram
Bi-gram/2-gram
P(Mary likes too) = P(too | Mark, likes) * P(likes | Mary) * P(Mary)
= P(too | likes) * P(likes | Marry) * P(Mary)
分布式表示 (Distributed representation)
用一个词附近的其他词来表示该词
共现矩阵 (Cocurrence matrix)
Word - Document 的共现矩阵主要用于发现主题(topic), 用于主题模型, 如LSA (Latent Semantic Analysis)。局域窗中的Word - Word 共现矩阵可以挖掘语法和语义信息
用SVD对共现矩阵向量做降维
NNLM (Neural Network Language model)
直接从语言模型出发, 将模型最优化过程转化为求词向量表示的过程
投影矩阵:词10000个 则10000*1-》300*1,相当于取出投影矩阵对应的该单词的那一列
拼接
最后要得到的结果是: 我 爱 北京 三个词都出现后,接下来一个词是什么--softmax给出1*10000的概率向量
word2vec: CBOW(连续词袋) --
没有用NNLM中的hidden layer(即去掉了非线性层,这样用cpu就可以做,不是个神经网络)
不做投射层了,而作一个词向量查询表
输入的时候直接是四个词的稠密向量--随机初始化
没有用拼接300-》900维,而是sum300-》300
输出还是10000维词向量,概率最大的就是预测出的词
两边的词预测中间的一个词- Continuous Bag-of-Words
中间的一个词预测两边- skip gram
改进--最后一层十万维维度太高
hirerachical softmax:编码成更低维度,并且信息都在 --》树--》哈夫曼编码,层次softmax,连续做做决策,计算量变为树的深度logv的数量级
negative sampling负例采样:10000个样本,中有10000-1个负样本 --》只取部分负样本--》如何取使得不影响结果:不是随机的,与我 喜欢 你 三个词的频率有关
离散表示
• One-hot representation, Bag Of Words Unigram语言模型
• N-gram词向量表示和语言模型
• Co-currence矩阵的行(列)向量作为词向量
分布式连续表示
• Co-currence矩阵的SVD降维的低维词向量表示
• Word2Vec: Continuous Bag of Words Model
• Word2Vec: Skip-Gram Mode
lecture2-word2vec-七月在线nlp的更多相关文章
- lecture1-Word2vec实战班-七月在线nlp
nltk的全称是natural language toolkit,是一套基于python的自然语言处理工具集.自带语料库.词性分类库.自带分类分词等功能.强大社区支持.很多简单版wrapper 文本处 ...
- 七月在线爬虫班学习笔记(五)——scrapy spider的几种爬取方式
第五课主要内容有: Scrapy框架结构,组件及工作方式 单页爬取-julyedu.com 拼URL爬取-博客园 循环下页方式爬取-toscrape.com Scrapy项目相关命令-QQ新闻 1.S ...
- 七月在线爬虫班学习笔记(六)——scrapy爬虫整体示例
第六课主要内容: 爬豆瓣文本例程 douban 图片例程 douban_imgs 1.爬豆瓣文本例程 douban 目录结构 douban --douban --spiders --__init__. ...
- 七月在线爬虫班学习笔记(二)——Python基本语法及面向对象
第二课主要内容如下: 代码格式 基本语法 关键字 循环判断 函数 容器 面向对象 文件读写 多线程 错误处理 代码格式 syntax基本语法 a = 1234 print(a) a = 'abcd' ...
- 第六课cnn和迁移学习-七月在线-cv
ppt 参数共享终于把拿一点想清楚啦,一定要知道w是矩阵! 在传统BP中,w前后连接时是all的,辣么多w使得你给我多少图片我就能记住多少信息-->导致过拟合-->cnn当中权值共享 激励 ...
- lecture7图像检索-七月在线-cv
http://blog.csdn.net/u014568921/article/details/52518587 图像相似性搜索的原理 BOW 原理及代码解析 Bag Of Visual Words ...
- lecture4特征提取-七月在线-cv
霍夫变换 http://blog.csdn.net/sudohello/article/details/51335237 http://blog.csdn.net/glouds/article/det ...
- 牛客网/LeetCode/七月在线/HelloWorld114
除了知乎,还有这些网站与offer/内推/秋招/春招相关. 其中HelloWorld114更是囊括许多IT知识. 当然,我们可以拓宽思考的维度,既然课堂上的老师讲不好,我们可以自己找资源啊= => ...
- 七月在线spark教程
链接:https://pan.baidu.com/s/1Ir5GMuDqJQBmSavHC-hDgQ 提取码:qd2e
随机推荐
- URL to load resources from the classpath in Java
In Java, you can load all kinds of resources using the same API but with different URL protocols: fi ...
- 使用AndroidStudio导入github项目
1.在studio中配置github的项目地址 2.当你点击github,会这个样子 3.此处放你要clone的地址 ,然后点击clone. 4.等一会会出现这个页面,然后点击yes ,会出现这个页面 ...
- Redis在linux环境下的安装和部署
官网:http://redis.io windows版本下载地址https://github.com/MicrosoftArchive/redis/releases 1Redis建议 ...
- H5 PWA技术以及小demo
H5 PWA技术 1.原生app优缺点 a.体验好.下载到手机上入口方便 b.开发成本高(ios和安卓) c.软件上线需要审核 d.版本更新需要将新版本上传到不同的应用商店 e.使用前需下载 2.we ...
- 逆袭之旅DAY16.东软实训.Oracle.修改用户
2018-07-12 15:49:51
- learning ddr write leveling
- import 语句
声明package的语句必须在java类的有效代码第一行,所import语句要放在package 声明语句之后. import的语法格式为: import+空格+类全限定名+: 该语句的作用是, ...
- vuesheng生命周期
对着官网的demo写例子,碰到了生命周期钩子方法,之前只是根据官网的图,了解了大概, 现在忍不住想去深扒一下,因此找了几个博客看了下,受益匪浅,故此笔记: 参考:http://www.cnblogs. ...
- python笔记6-while、for循环
1.while--while循环之前,先判断一次,如果满足条件的话,再循环 #while循环 count=(input("请输入循环次数"))#计数器 while count< ...
- Centos7部署kubelet(六)
1.二进制包准备将软件包从linux-node1复制linux-node2.linux-node3中去 [root@linux-node1 ssl]# cd /usr/local/src/kubern ...