CF-787D-线段树建图+最短路
http://codeforces.com/problemset/problem/787/D
题目大意是给出一个有向图,有N个节点,初始节点在S,询问S到所有点最短路。边的读入方式有三种, 1 u v w 表示 u->v有一条边权为w的边, 2 v l r w ,表示v->[l,r]内的任意一个点支付w即可,
3 v l r w 表示从[l,r]内任意一个点到v支付w即可。直接构图的话可能会出现完全图,被卡死。
一种巧妙的构图方式是,由这些个区间联想到线段树(然而我并没有想到),我们不妨对2,3两种类型建立两颗线段树 他们的叶子节点是共用的(1--N),对于2来说,如果节点v到树上的某个节点x有一条w的边,
就表示v到这个节点所对应的区间的点都可以支付w到达,并且在2的内部所有的父亲都向自己的儿子建立一条边权为0的边,这样如果v能到达x,说明v能到达x所有的子孙节点(支付w),对于3来说只不过反过来了一下思路一样。
建完图之后跑最短路就好了,节点数大约N*10够了。
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define pii pair<int,int>
#define mid ((L+R)>>1)
#define lc (id<<1)
#define rc (id<<1|1)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define linf 0xffffffffffff
const int maxn=;
int N,Q,S,T0,T1,CNT;
int ch[maxn*][];
LL d[maxn*];
bool in[maxn*];
int tot,first[maxn*];
struct Edge{int v,w,next;}e[maxn*];
void add(int u,int v,int w){
e[tot].v=v;
e[tot].w=w;
e[tot].next=first[u];
first[u]=tot++;
}
void build1(int &p,int L,int R){
if(L==R) p=L;
else{
p=++CNT;
build1(ch[p][],L,mid),build1(ch[p][],mid+,R);
add(p,ch[p][],),add(p,ch[p][],);
}
} void build2(int &p,int L,int R){
if(L==R) p=L;
else{
p=++CNT;
build2(ch[p][],L,mid),build2(ch[p][],mid+,R);
add(ch[p][],p,),add(ch[p][],p,);
}
}
void insert1(int id,int L,int R,int v,int l,int r,int w){
if(L>=l&&R<=r){
add(v,id,w);
return;
}
if(l<=mid)insert1(ch[id][],L,mid,v,l,r,w);
if(r>mid)insert1(ch[id][],mid+,R,v,l,r,w);
} void insert2(int id,int L,int R,int v,int l,int r,int w){
if(L>=l&&R<=r){
add(id,v,w);
return;
}
if(l<=mid)insert2(ch[id][],L,mid,v,l,r,w);
if(r>mid)insert2(ch[id][],mid+,R,v,l,r,w);
}
void spfa(){
for(int i=;i<=CNT;++i)d[i]=linf;
memset(in,,sizeof(in));
queue<int>q;
q.push(S);
in[S]=;
d[S]=;
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=first[u];~i;i=e[i].next){
if(d[e[i].v]>d[u]+e[i].w){
d[e[i].v]=d[u]+e[i].w;
if(!in[e[i].v]){
q.push(e[i].v);
}
}
}
}
for(int i=;i<=N;++i) printf("%lld%c",d[i]==linf?-:d[i],i==N?'\n':' ');
}
int main()
{
memset(first,-,sizeof(first));
tot=;
scanf("%d%d%d",&N,&Q,&S);
CNT=N;
build1(T0,,N);
build2(T1,,N);
int opt,u,v,w,l,r;
while(Q--){
scanf("%d",&opt);
if(opt==){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
else{
scanf("%d%d%d%d",&v,&l,&r,&w);
if(opt==){
insert1(T0,,N,v,l,r,w);
}
else{
insert2(T1,,N,v,l,r,w);
}
}
}
spfa();
return ;
}
/*0 -1-112
0 -1 -1 12
*/
CF-787D-线段树建图+最短路的更多相关文章
- 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- BZOJ4383/LuoGuP3588 Pustynia/PUS 线段树建图优化
我会告诉你我看了很久很久才把题目看懂吗???怀疑智商了 原来他给的l,r还有k个数字都是下标... 比如给了一个样例 l, r, k, x1,x2,x3...xk,代表的是一个数组num[l]~num ...
- HDU5669 Road 分层最短路+线段树建图
分析:(官方题解) 首先考虑暴力,显然可以直接每次O(n^2) 的连边,最后跑一次分层图最短路就行了. 然后我们考虑优化一下这个连边的过程 ,因为都是区间上的操作,所以能够很明显的想到利用线段树来维 ...
- Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- POJ 2374 线段树建图+Dijkstra
题意: 思路: 线段树+Dijkstra(要堆优化的) 线段树要支持打标记 一个栅栏 拆成两个点 :左和右 新加一个栅栏的时候 看看左端点有没有被覆盖过 如果有的话 就分别从覆盖的那条线段的左右向当前 ...
- CodeForces 786B Legacy(线段树优化建图+最短路)
[题目链接] http://codeforces.com/problemset/problem/786/B [题目大意] 给出一些星球,现在有一些传送枪,可以从一个星球到另一个星球, 从一个星球到另一 ...
- G. 神圣的 F2 连接着我们 线段树优化建图+最短路
这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...
- B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路
B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...
随机推荐
- (zhuan) Recurrent Neural Network
Recurrent Neural Network 2016年07月01日 Deep learning Deep learning 字数:24235 this blog from: http:/ ...
- K8S笔记
K8S 集群结构图 一些名词: etcd etcd保存了整个集群的状态:用于持久化存储集群中所有的资源对象,如Node.Service.Pod.RC.Namespace等:API Server提供了操 ...
- Kylin工作原理、体系架构
核心思想:预计算. 对多维分析可能用到的度量进行预计算,将计算好的结果保存成Cube,并存在HBase中,供查询时直接访问 将高复杂度的聚合运算.多表连接……操作转换成对预计算结果的查询.决定了Kyl ...
- PHP feof()函数
feof()函数检查是否已经到达文件末尾(EOF) EOF == end of file 如果出错或者文件指针到了文件末尾(EOF)则返回true,否则返回false 语法: feof(file) ...
- ASP.NET —— Web Pages
为简单起见,新建一个空的web工程,再新建一个MVC的视图(.cshtml),因为WP是单页面模型,所以以后就在这个页面中进行试验. Razor语法简介: 变量可用var或者其确切类型声明. 遍历fo ...
- 极简 R 包建立方法--转载
https://cosx.org/2013/11/building-r-packages-easily/ 最近想试一下捣腾一个 R 包出来,故参考了一些教程.现在看到的最好的就是谢益辉大大之前写过的开 ...
- 【Python】【数据库】
#[[数据库]]'''MySQL是Web世界中使用最广泛的数据库服务器.SQLite的特点是轻量级.可嵌入,但不能承受高并发访问,适合桌面和移动应用.而MySQL是为服务器端设计的数据库,能承受高并发 ...
- class与struct的区别
C++中的struct对C中的struct进行了扩充,它已经不再只是一个包含不同数据类型的数据结构了,它已经获取了太多的功能: ①struct能包含成员函数吗? 能! ②struct能继承吗? 能!! ...
- Tp3.2 复合查询
我们常常有这样的需求,比如搜索. 搜索出,标题,子标题,内容中包含某某关键字. 这就要and,or结合使用了. $where = ['is_show'=>1,'status'=>1]; / ...
- Git Gui 常见错误