CF-787D-线段树建图+最短路
http://codeforces.com/problemset/problem/787/D
题目大意是给出一个有向图,有N个节点,初始节点在S,询问S到所有点最短路。边的读入方式有三种, 1 u v w 表示 u->v有一条边权为w的边, 2 v l r w ,表示v->[l,r]内的任意一个点支付w即可,
3 v l r w 表示从[l,r]内任意一个点到v支付w即可。直接构图的话可能会出现完全图,被卡死。
一种巧妙的构图方式是,由这些个区间联想到线段树(然而我并没有想到),我们不妨对2,3两种类型建立两颗线段树 他们的叶子节点是共用的(1--N),对于2来说,如果节点v到树上的某个节点x有一条w的边,
就表示v到这个节点所对应的区间的点都可以支付w到达,并且在2的内部所有的父亲都向自己的儿子建立一条边权为0的边,这样如果v能到达x,说明v能到达x所有的子孙节点(支付w),对于3来说只不过反过来了一下思路一样。
建完图之后跑最短路就好了,节点数大约N*10够了。
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define pii pair<int,int>
#define mid ((L+R)>>1)
#define lc (id<<1)
#define rc (id<<1|1)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define linf 0xffffffffffff
const int maxn=;
int N,Q,S,T0,T1,CNT;
int ch[maxn*][];
LL d[maxn*];
bool in[maxn*];
int tot,first[maxn*];
struct Edge{int v,w,next;}e[maxn*];
void add(int u,int v,int w){
e[tot].v=v;
e[tot].w=w;
e[tot].next=first[u];
first[u]=tot++;
}
void build1(int &p,int L,int R){
if(L==R) p=L;
else{
p=++CNT;
build1(ch[p][],L,mid),build1(ch[p][],mid+,R);
add(p,ch[p][],),add(p,ch[p][],);
}
} void build2(int &p,int L,int R){
if(L==R) p=L;
else{
p=++CNT;
build2(ch[p][],L,mid),build2(ch[p][],mid+,R);
add(ch[p][],p,),add(ch[p][],p,);
}
}
void insert1(int id,int L,int R,int v,int l,int r,int w){
if(L>=l&&R<=r){
add(v,id,w);
return;
}
if(l<=mid)insert1(ch[id][],L,mid,v,l,r,w);
if(r>mid)insert1(ch[id][],mid+,R,v,l,r,w);
} void insert2(int id,int L,int R,int v,int l,int r,int w){
if(L>=l&&R<=r){
add(id,v,w);
return;
}
if(l<=mid)insert2(ch[id][],L,mid,v,l,r,w);
if(r>mid)insert2(ch[id][],mid+,R,v,l,r,w);
}
void spfa(){
for(int i=;i<=CNT;++i)d[i]=linf;
memset(in,,sizeof(in));
queue<int>q;
q.push(S);
in[S]=;
d[S]=;
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=first[u];~i;i=e[i].next){
if(d[e[i].v]>d[u]+e[i].w){
d[e[i].v]=d[u]+e[i].w;
if(!in[e[i].v]){
q.push(e[i].v);
}
}
}
}
for(int i=;i<=N;++i) printf("%lld%c",d[i]==linf?-:d[i],i==N?'\n':' ');
}
int main()
{
memset(first,-,sizeof(first));
tot=;
scanf("%d%d%d",&N,&Q,&S);
CNT=N;
build1(T0,,N);
build2(T1,,N);
int opt,u,v,w,l,r;
while(Q--){
scanf("%d",&opt);
if(opt==){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
else{
scanf("%d%d%d%d",&v,&l,&r,&w);
if(opt==){
insert1(T0,,N,v,l,r,w);
}
else{
insert2(T1,,N,v,l,r,w);
}
}
}
spfa();
return ;
}
/*0 -1-112
0 -1 -1 12
*/
CF-787D-线段树建图+最短路的更多相关文章
- 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- BZOJ4383/LuoGuP3588 Pustynia/PUS 线段树建图优化
我会告诉你我看了很久很久才把题目看懂吗???怀疑智商了 原来他给的l,r还有k个数字都是下标... 比如给了一个样例 l, r, k, x1,x2,x3...xk,代表的是一个数组num[l]~num ...
- HDU5669 Road 分层最短路+线段树建图
分析:(官方题解) 首先考虑暴力,显然可以直接每次O(n^2) 的连边,最后跑一次分层图最短路就行了. 然后我们考虑优化一下这个连边的过程 ,因为都是区间上的操作,所以能够很明显的想到利用线段树来维 ...
- Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- POJ 2374 线段树建图+Dijkstra
题意: 思路: 线段树+Dijkstra(要堆优化的) 线段树要支持打标记 一个栅栏 拆成两个点 :左和右 新加一个栅栏的时候 看看左端点有没有被覆盖过 如果有的话 就分别从覆盖的那条线段的左右向当前 ...
- CodeForces 786B Legacy(线段树优化建图+最短路)
[题目链接] http://codeforces.com/problemset/problem/786/B [题目大意] 给出一些星球,现在有一些传送枪,可以从一个星球到另一个星球, 从一个星球到另一 ...
- G. 神圣的 F2 连接着我们 线段树优化建图+最短路
这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...
- B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路
B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...
随机推荐
- 【Hadoop 分布式部署 六:环境问题解决和集群基准测试】
环境问题: 出现Temporary failure in name resolutionp-senior-zuoyan.com 的原因有很多,主要就是主机没有解析到, 那就在hadoop的sl ...
- ISE14.7兼容性问题集锦https://www.cnblogs.com/ninghechuan/p/7241371.html
ISE14.7兼容性问题集锦 对于电子工程师来说,很多电路设计仿真软件都是特别大的,安装下来一般都是上G,甚至几十G,而且win7的兼容性也是最好的,不愿意升级win10是因为麻烦,而且没有必要,对于 ...
- Perl中命令行参数以及打开管道文件
打开管道文件 Linux提供了管道机制,可以方便应用程序之间的数据传递.在Perl中,扣开和使用管道可采用如下形式的open函数: open(Filehandle,”丨 CMD”); 其中 ...
- .Net MVC关于子页面引用js库问题
layout页面中的配置: @RenderSection("scripts", required: false) @RenderSection("Styles" ...
- “AI”项目日记
前言:为了更好的以“实践”巩固“学习”,利用空余时间,打造一个属于自己的项目 项目目标: 1.将学习的知识用项目实践,在实践过程中去领悟新的知识 2.高度自由,根据不同时期的学习目标,融入项目中去用代 ...
- Django 操作Mysql数据库
pip安装mysqlclient sudo ln -s /usr/local/mysql/bin/mysql_config /usr/local/bin/mysql_config sudo pip i ...
- file_put_contents结合print_r,打造日志功能
<?php $log = []; $log['name'] = '张三'; $log['age'] = '15'; $log['date'] = date('Y-m-d'); echo prin ...
- L2-021 点赞狂魔
会set的基础用法就可以A了,虽然是L2题,但是不难,代码如下,很好理解,set在这里不解释了自己去网上查一下就明白了: #include<stdio.h> #include<str ...
- [osg]节点遍历nodevisitor浅析
参考:https://www.cnblogs.com/hzhg/archive/2010/12/17/1908764.html OSG中节点的访问使用的是一种访问器模式.一个典型的访问器涉及抽象访问者 ...
- R语言 set.seed()函数
看了几个帖子,说得不是特别清楚,特重新描述如下: set.seed()函数是为了保证你随机生成的随机数前后一致,看效果 首先,不设置该种子函数. x=rnorm(10) plot(x)绘出的图如下: ...