from:http://blog.csdn.net/jinping_shi/article/details/52433867

Python多进程库multiprocessing中进程池Pool类的使用

问题起因

最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果。没错!类似bagging ensemble!只是我没有抽样。文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic。可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种。我真是低估了调参的时间,程序跑了一天一夜最后因为忘记import一个库导致最终的预测精度没有算出来。后来想到,既然每个topic的预测都是独立的,那是不是可以并行呢?

Python中的多线程与多进程

但是听闻Python的多线程实际上并不能真正利用多核,所以如果使用多线程实际上还是在一个核上做并发处理。不过,如果使用多进程就可以真正利用多核,因为各进程之间是相互独立的,不共享资源,可以在不同的核上执行不同的进程,达到并行的效果。同时在我的问题中,各topic相互独立,不涉及进程间的通信,只需最后汇总结果,因此使用多进程是个不错的选择。

multiprocessing

一个子进程

multiprocessing模块提供process类实现新建进程。下述代码是新建一个子进程。

from multiprocessing import Process

def f(name):
print 'hello', name if __name__ == '__main__':
p = Process(target=f, args=('bob',)) # 新建一个子进程p,目标函数是f,args是函数f的参数列表
p.start() # 开始执行进程
p.join() # 等待子进程结束

上述代码中p.join()的意思是等待子进程结束后才执行后续的操作,一般用于进程间通信。例如有一个读进程pw和一个写进程pr,在调用pw之前需要先写pr.join(),表示等待写进程结束之后才开始执行读进程。

多个子进程

如果要同时创建多个子进程可以使用multiprocessing.Pool类。该类可以创建一个进程池,然后在多个核上执行这些进程。

import multiprocessing
import time def func(msg):
print multiprocessing.current_process().name + '-' + msg if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4) # 创建4个进程
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close() # 关闭进程池,表示不能在往进程池中添加进程
pool.join() # 等待进程池中的所有进程执行完毕,必须在close()之后调用
print "Sub-process(es) done."

输出结果如下:

Sub-process(es) done.
PoolWorker-34-hello 1
PoolWorker-33-hello 0
PoolWorker-35-hello 2
PoolWorker-36-hello 3
PoolWorker-34-hello 7
PoolWorker-33-hello 4
PoolWorker-35-hello 5
PoolWorker-36-hello 6
PoolWorker-33-hello 8
PoolWorker-36-hello 9

上述代码中的pool.apply_async()apply()函数的变体,apply_async()apply()的并行版本,apply()apply_async()的阻塞版本,使用apply()主进程会被阻塞直到函数执行结束,所以说是阻塞版本。apply()既是Pool的方法,也是Python内置的函数,两者等价。可以看到输出结果并不是按照代码for循环中的顺序输出的。

多个子进程并返回值

apply_async()本身就可以返回被进程调用的函数的返回值。上一个创建多个子进程的代码中,如果在函数func中返回一个值,那么pool.apply_async(func, (msg, ))的结果就是返回pool中所有进程的值的对象(注意是对象,不是值本身)。

import multiprocessing
import time def func(msg):
return multiprocessing.current_process().name + '-' + msg if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4) # 创建4个进程
results = []
for i in xrange(10):
msg = "hello %d" %(i)
results.append(pool.apply_async(func, (msg, )))
pool.close() # 关闭进程池,表示不能再往进程池中添加进程,需要在join之前调用
pool.join() # 等待进程池中的所有进程执行完毕
print ("Sub-process(es) done.") for res in results:
print (res.get())

上述代码输出结果如下:

Sub-process(es) done.
PoolWorker-37-hello 0
PoolWorker-38-hello 1
PoolWorker-39-hello 2
PoolWorker-40-hello 3
PoolWorker-37-hello 4
PoolWorker-38-hello 5
PoolWorker-39-hello 6
PoolWorker-37-hello 7
PoolWorker-40-hello 8
PoolWorker-38-hello 9

与之前的输出不同,这次的输出是有序的。

如果电脑是八核,建立8个进程,在Ubuntu下输入top命令再按下大键盘的1,可以看到每个CPU的使用率是比较平均的,如下图:

在system monitor中也可以清楚看到执行多进程前后CPU使用率曲线的差异。 

版权声明:本作品采用知识共享 署名-非商业性使用 3.0 中国大陆 许可协议进行许可。

Python多进程库multiprocessing中进程池Pool类的使用[转]的更多相关文章

  1. Python多进程库multiprocessing中进程池Pool类的使用

    问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似ba ...

  2. Python多进程库multiprocessing创建进程以及进程池Pool类的使用

    问题起因最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bag ...

  3. PYTHON多进程编码结束之进程池POOL

    结束昨晚开始的测试. 最后一个POOL. A,使用POOL的返回结果 #coding: utf-8 import multiprocessing import time def func(msg): ...

  4. multiprocessing中进程池,线程池的使用

    multiprocessing 多进程基本使用 示例代码1 import time import random from multiprocessing import Process def run( ...

  5. python学习笔记——multiprocessing 多进程组件 进程池Pool

    1 进程池Pool基本概述 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量时间,如果操作的对象数目不大时,还可以直接适用Process类动态生成 ...

  6. python 进程池pool简单使用

    平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘ ...

  7. Python多进程并发操作进程池Pool

    目录: multiprocessing模块 Pool类 apply apply_async map close terminate join 进程实例 multiprocessing模块 如果你打算编 ...

  8. [转]Python多进程并发操作中进程池Pool的应用

    Pool类 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间.如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十 ...

  9. Python多进程并发操作中进程池Pool的应用

    Pool类 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间.如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十 ...

随机推荐

  1. oracle <> 选不出为null的部分

    比如 tablea 的 字段b 为空,则 select * from tablea where b <> 'Y' 则查不出b is null 的部分

  2. guava常用

    教程: http://www.yiibai.com/guava/ http://ifeve.com/google-guava/ optional 注意java8同样提供optional,区分 意义: ...

  3. NodeMCU入门(3):断线自动重连,指示灯显示连接状态

    准备工作 1.NodeMCU模块 2.ESPlorer v0.2.0-rc6 事件监听器 NodeMCU采用了事件响应的方式.也就是说,只需为事件设置一个回调函数,当事件发生时,回调函数就会被调用. ...

  4. 【AtCoder】KEYENCE Programming Contest 2019

    A - Beginning 这个年份恐怕需要+2 #include <bits/stdc++.h> #define fi first #define se second #define p ...

  5. Matrix PKU 2155

    问题描述 给定N * N矩阵A,其元素为0或1.A [i,j]表示第i行和第j列中的数字.最初我们有A [i,j] = 0(1 <= i,j <= N). 我们可以通过以下方式更改矩阵.给 ...

  6. 【Java】 剑指offer(59-1) 滑动窗口的最大值

      本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 给定一个数组和滑动窗口的大小,请找出所有滑动窗口里的最大值.例 ...

  7. Playmaker全面实践教程之Playmaker常用工具

    Playmaker全面实践教程之Playmaker常用工具 Playmaker常用工具 Playmaker插件搭载了8个工具:FSM Browser.State Browser.Templates.T ...

  8. emlog编辑器探寻之旅

    本文同步于我的个人博客 emlog编辑器探寻之旅 一直想要寻找一个好用的emlog文本编辑器,寻觅了很久,从默认的KindEditor编辑器开始,用了几天就感觉特别难用,很多需求根本满足不了.后来想要 ...

  9. python-docx

    pip install python-docx 注意不要直接下载docx包 from docx import Document from docx.shared import RGBColor,Inc ...

  10. POJ.1752.Advertisement(差分约束 最长路SPFA)

    题目链接 \(Description\) 有\(n\)个人在一条直线上跑步,每个人的起点 \(Si\).终点 \(Ei\) 已知:每个点可以放一个广告牌,一个人\(i\)能看到的广告牌数量为 \(Ei ...