[Machine Learning] 梯度下降法的三种形式BGD、SGD以及MBGD
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。
下面我们以线性回归算法来对三种梯度下降法进行比较。
一般线性回归函数的假设函数为:
$h_{\theta}=\sum_{j=0}^{n}\theta_{j}x_{j}$
对应的能量函数(损失函数)形式为:
$J_{train}(\theta)=1/(2m)\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^{2}$
下图为一个二维参数($\theta_{0}$和$\theta_{1}$)组对应能量函数的可视化图:

1. 批量梯度下降法BGD
批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新,其数学形式如下:
(1) 对上述的能量函数求偏导:
(2) 由于是最小化风险函数,所以按照每个参数$\theta$的梯度负方向来更新每个$\theta$:
具体的伪代码形式为:
repeat{
(for every j=0, ... , n)
}
从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果样本数目$m$很大,那么可想而知这种方法的迭代速度!所以,这就引入了另外一种方法,随机梯度下降。
优点:全局最优解;易于并行实现;
缺点:当样本数目很多时,训练过程会很慢。
从迭代的次数上来看,BGD迭代的次数相对较少。其迭代的收敛曲线示意图可以表示如下:

2. 随机梯度下降法SGD
由于批量梯度下降法在更新每一个参数时,都需要所有的训练样本,所以训练过程会随着样本数量的加大而变得异常的缓慢。随机梯度下降法(Stochastic Gradient Descent,简称SGD)正是为了解决批量梯度下降法这一弊端而提出的。
将上面的能量函数写为如下形式:
利用每个样本的损失函数对$\theta$求偏导得到对应的梯度,来更新$\theta$:
具体的伪代码形式为:
1. Randomly shuffle dataset;
2. repeat{
for i=1, ... , $m${
(for j=0, ... , $n$)
}
}
随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。
优点:训练速度快;
缺点:准确度下降,并不是全局最优;不易于并行实现。
从迭代的次数上来看,SGD迭代的次数较多,在解空间的搜索过程看起来很盲目。其迭代的收敛曲线示意图可以表示如下:

3. 小批量梯度下降法MBGD
有上述的两种梯度下降法可以看出,其各自均有优缺点,那么能不能在两种方法的性能之间取得一个折衷呢?即,算法的训练过程比较快,而且也要保证最终参数训练的准确率,而这正是小批量梯度下降法(Mini-batch Gradient Descent,简称MBGD)的初衷。
MBGD在每次更新参数时使用b个样本(b一般为10),其具体的伪代码形式为:
Say b=10, m=1000.
Repeat{
for i=1, 11, 21, 31, ... , 991{

(for every j=0, ... , $n$)
}
}
4. 总结
Batch gradient descent: Use all examples in each iteration;
Stochastic gradient descent: Use 1 example in each iteration;
Mini-batch gradient descent: Use b examples in each iteration.
[Machine Learning] 梯度下降法的三种形式BGD、SGD以及MBGD的更多相关文章
- 梯度下降法的三种形式BGD、SGD以及MBGD
https://www.cnblogs.com/maybe2030/p/5089753.html 阅读目录 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD 4. ...
- 梯度下降法的三种形式-BGD、SGD、MBGD
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. ...
- [ch04-05] 梯度下降的三种形式
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 4.5 梯度下降的三种形式 我们比较一下目前我们用三种方 ...
- [Machine Learning] 梯度下降(BGD)、随机梯度下降(SGD)、Mini-batch Gradient Descent、带Mini-batch的SGD
一.回归函数及目标函数 以均方误差作为目标函数(损失函数),目的是使其值最小化,用于优化上式. 二.优化方式(Gradient Descent) 1.最速梯度下降法 也叫批量梯度下降法Batch Gr ...
- Qt学习 之 多线程程序设计(QT通过三种形式提供了对线程的支持)
QT通过三种形式提供了对线程的支持.它们分别是, 一.平台无关的线程类 二.线程安全的事件投递 三.跨线程的信号-槽连接. 这使得开发轻巧的多线程Qt程序更为容易,并能充分利用多处理器机器的优势.多线 ...
- spring对事务支持的三种形式
spring对事务支持的三种形式: 1.通过spring配置文件进行切面配置 <bean id="***Manager" class="org.springfram ...
- Spring Framework5.0 学习(3)—— spring配置文件的三种形式
Spring Framework 是 IOC (Inversion of Control 控制反转)原则的实践. IoC is also known as dependency injection ...
- spring Bean配置的三种形式
Spring Bean配置有以下三种形式: 传统的xml配置 Spring 2.5 以后新增注解配置 Spring3.0以后新增JavaConfig 1. 传统的xml配置 <?xml vers ...
- 2、shader基本语法、变量类型、shader的三种形式、subshader、fallback、Pass LOD、tags
新建一个shader,名为MyShader1内容如下: 1._MainTex 为变量名 2.“Base (RGB)”表示在unity编辑面板中显示的名字,可以定义为中文 3.2D 表示变量的类型 4. ...
随机推荐
- [iOS]技巧集锦:UICollectionView在旋转屏幕后Cell中的约束不起作用或自动布局失效
这似乎是iOS的一个BUG(ref: stackoverflow的大神们讲的) 解决方案 在继承自UITableViewCell的子类中的init方法中加入如下设置: self.contentView ...
- Visual Studio Emulator for Android 初体验
Visual Studio Emulator for Android已经推出一段时间了,但一直没有用过.前两天下载安装用了下,整体感觉比谷歌自带的模拟器强多了.Visual Studio Emulat ...
- 连载《一个程序猿的生命周期》-《发展篇》 - 3.农民与软件工程师,农业与IT业
相关文章:随笔<一个程序猿的生命周期>- 逆潮流而动的“叛逆者” 15年前,依稀记得走出大山,进城求学的场景.尽管一路有父亲的陪伴,但是内心仍然畏惧.当父亲转身离去.准备回到 ...
- 使用串口线真机调试Linux内核
一.环境 ubuntu 14.04 一台有串口的PC(编号PC1,被调试机器) 另一台PC通过USB转串口线连接PC1(编号PC2,发起调试命令的机器) 二.串口线配置及测试 安装cutecom US ...
- Laravel中的ajax跨域请求
最近接触Laravel框架ajax跨域请求的过程中遇到一些问题,在这里做下总结. 一开始发起ajax请求一直报500错误,搜索相关资料后发现Laravel要允许跨域请求可以加入Cors中间件,代码如下 ...
- [LeetCode] Rearrange String k Distance Apart 按距离为k隔离重排字符串
Given a non-empty string str and an integer k, rearrange the string such that the same characters ar ...
- [小干货]SqlBulkCopy简单封装,让批量插入更方便
关于 SqlServer 批量插入的方式,前段时间也有大神给出了好几种批量插入的方式及对比测试(http://www.cnblogs.com/jiekzou/p/6145550.html),估计大家也 ...
- Gulp 入门
1. 安装 Node 环境 参考 http://www.cnblogs.com/zichi/p/4627728.html,注意一起安装 npm 工具,并把路径保存到环境变量中(安装过程中会有提醒) 安 ...
- JaveScript-解决表格使用滚动条时冻结表头栏问题
解决方法: //设置表格表头里的th==表格内容里的td function ThEqualTd(thId, tdId) { var tdNum = document.getElementById(td ...
- vsftp简单学习思考
FTP的全称是File Transfer Protocol(文件传输协议),就是专门用来传输文件的协议.它工作在OSI模型的第七层,即是应用层,使用TCP传输而不是UDP这样FTP客户端和服务器建立连 ...