POJ 3279 Fliptile (二进制枚举)
<题目链接>
<转载于 >>> >
题目大意:
给定一个M*N矩阵,有些是黑色(1表示)否则白色(0表示),每翻转一个(i,j),会使得它和它周围4个格变为另一个颜色,要求翻转最少的点,使得变为全白色的矩阵,输出这个标记了翻转点的矩阵,如果有多个最优解,输出字典序最小的那个矩阵,若没有解,输出IMPOSSIBLE。
解题分析:
由于一个点翻转两次则返回原来的状态,所以最优解每个点最多翻转一次,但是2^(M*N)过大,所以2^N枚举第一行的所有翻转方式(逆字典序枚举),确定一种方式之后第二行也就随之确定了,因为如果第一行处理后没有翻回白色的点:(i,j),必须在第二行(i+1,j)翻回,否则将无法返回。反之第二行其他的点都处理为不翻转,要不然上一行的点会翻回黑色而无法改变。第二行ok后同理解决第三行,以此类推。处理到最后一行如果不是全白就输出IMPOSSIBLE。否则更新结果。
即,用二进制枚举第一行的翻转情况,然后2~n-1行按照上一行的情况来翻转,最后再判断最后一行是否全部为0,如果为0,则记录下翻转次数,随时更新答案。
#include<cstdio>
#include<cstring>
int t[][], tem[][], m[][];
//这里用一个数组记录翻转次数,再配合原来的点数,就能判断反转后的点数,这里很巧妙
int M,N,dir[][] = { ,,,,,,-,,,- }; int get(int x, int y)//获得x,y点的颜色 //它本身的点数,再加上周围四个点反转的次数,就能得到它的真实点数
{
int c = t[x][y];
for (int i = ; i < ; i++)
{
int x1 = x + dir[i][], y1 = y + dir[i][];
c += tem[x1][y1];
}
return c % ;
} int cal() //计算2行及之后的,有解返回翻点数,无解返回-1
{
for (int i = ; i <= M; i++)
for (int j = ; j <= N; j++)
if (get(i - , j) == )
tem[i][j] = ;
//得到前n-1行的翻转次数 for (int i = ; i <= N; i++)
if (get(M, i))return -; //如果最后一行有一个点不为0,说明枚举的第一行不符合要求s
int res = ;
for (int i = ; i <= M; i++)
for (int j = ; j <= N; j++)
res += tem[i][j];
return res; //记录下需要翻转的总次数
} int main()
{
int min = -; //次数>0可以这样初始化
scanf("%d%d", &M, &N);
for (int i = ; i <= M; i++)
for (int j = ; j <= N; j++)
scanf("%d", &t[i][j]);
for (int i = ; i < ( << N); i++) //枚举第一行的所有情况
{
memset(tem, , sizeof(tem)); //初始化翻转数组
for (int j = ; j <= N; j++)
tem[][j] = (i >> (j - )) & ; //根据二进制得到第一行的翻转情况,这个技巧一定要掌握 int num = cal();
if (num >= && (min< || min>num)) //取情况成立并且总翻转次数最小的
{
min = num;
memcpy(m, tem, sizeof(tem)); //记录下最后的翻转矩阵
}
} if (min == -)printf("IMPOSSIBLE\n");
else
{
for (int i = ; i <= M; i++)
for (int j = ; j <= N; j++)
printf("%d%c", m[i][j], j == N ? '\n' : ' ');
}
return ;
}
2018-08-30
POJ 3279 Fliptile (二进制枚举)的更多相关文章
- poj 3279 Fliptile(二进制)
http://poj.org/problem?id=3279 在n*N的矩阵上,0代表白色,1代表黑色,每次选取一个点可以其颜色换过来,即白色变成黑色,黑色变成白色,而且其上下左右的点颜色也要交换,求 ...
- poj 3279 Fliptile(二进制搜索)
Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He ha ...
- POJ 3279 Fliptile[二进制状压DP]
题目链接[http://poj.org/problem?id=3279] 题意:给出一个大小为M*N(1 ≤ M ≤ 15; 1 ≤ N ≤ 15) 的图,图中每个格子代表一个灯泡,mp[i][j] ...
- POJ - 3279 Fliptile (枚举)
http://poj.org/problem?id=3279 题意 一个m*n的01矩阵,每次翻转(x,y),那么它上下左右以及本身就会0变1,1变0,问把矩阵变成全0的,最小需要点击多少步,并输出最 ...
- POJ 3279 Fliptile【枚举】
题意: 又是农夫和牛的故事...有m*n个黑白块,黑块的背面是白块,白块背面是黑块,一头牛踩一块,则这个块的上下左右的方块都会转动,问至少踩多少块,才会使所有块都变成白色? 分析: 还是开关问题,同样 ...
- POJ.3279 Fliptile (搜索+二进制枚举+开关问题)
POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...
- 状态压缩+枚举 POJ 3279 Fliptile
题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...
- POJ 3279 Fliptile(翻格子)
POJ 3279 Fliptile(翻格子) Time Limit: 2000MS Memory Limit: 65536K Description - 题目描述 Farmer John kno ...
- POJ 3279 Fliptile(反转 +二进制枚举)
Fliptile Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13631 Accepted: 5027 Descrip ...
随机推荐
- 第19月第8天 斯坦福大学公开课机器学习 (吴恩达 Andrew Ng)
1.斯坦福大学公开课机器学习 (吴恩达 Andrew Ng) http://open.163.com/special/opencourse/machinelearning.html 笔记 http:/ ...
- python - 上下文管理协议(with + __enter__ + __exit__)
上下文管理协议: with + __enter__ + __exit__ #上下问管理协议: #with + __enter__ + __exit__ class Test(): def __init ...
- Struts自定义拦截器&拦截器工作原理
0.拦截器的调用原理: 拦截器是一个继承了序列化接口的普通接口.其工作原理是讲需要被拦截的对象作为参数传到intercept()方法内,在方法内部对此对象进行处理之后再执行原方法.intercept( ...
- SpringMVC的JSON数据交互(七)-@Response,@RestController,@RequestBody用法
1.@RequestBody (自动将请求的数据封装为对象) 作用: @RequestBody注解用于读取http请求的内容(字符串),通过springmvc提供的HttpMessageConve ...
- SpringBoot整合Jest操作ES
(1).添加依赖 <dependency> <groupId>io.searchbox</groupId> <artifactId>jest</a ...
- Pytorch之可视化
先解决下keras可视化安装graphviz的问题: 注意安装顺序: sudo pip3 install graphviz # python包 sudo apt-get install graphvi ...
- 算法导论 之 红黑树 - 删除[C语言]【转】
转自:https://blog.csdn.net/qifengzou/article/details/17608863 作者:邹祁峰 邮箱:Qifeng.zou.job@hotmail.com 博客: ...
- git入门与实践【转】
转自:http://www.cnblogs.com/shenhaocn/archive/2011/03/13/1982957.html 什么是版本控制 要了解什么是git,首先需要了解什么是版本控制( ...
- Oracle实体化视图
1.减轻网络负担:通过MV将数据从一个数据库分发到多个不同的数据库上,通过对多个数据库访问来减轻对单个数据库的网络负担. 2.搭建分发环境:通过从一个中央数据库将数据分发到多个节点数据库,达到分发数 ...
- composer安装laravel框架时未生成Vendor解决办法
三个方法并没有关联,可以单独尝试也可以一起设置. 方法一. 去php.ini中查看下面三个扩展项是否开启 extension=php_fileinfo.dll extension=php_mbstri ...