Spark排序之SortBy
sortBy函数源码:接收三个参数,第一个参数必须,第二个和第三个参数非必要
def sortBy[K](
f: (T) => K,
ascending: Boolean = true,
numPartitions: Int = this.partitions.length)
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T] = withScope {
this.keyBy[K](f)
.sortByKey(ascending, numPartitions)
.values
}
1、例子1:按照value进行降序排序
package com.test.spark
import org.apache.spark.{SparkConf, SparkContext} /**
* @author admin
* SortBy是SortByKey的增强版
* 按照value进行排序
*/
object SparkSortByApplication { def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("SortSecond").setMaster("local[1]")
val sc = new SparkContext(conf)
val datas = sc.parallelize(Array(("cc",12),("bb",32),("cc",22),("aa",18),("bb",16),("dd",16),("ee",54),("cc",1),("ff",13),("gg",32),("bb",4)))
// 统计key出现的次数
val counts = datas.reduceByKey(_+_)
// 按照value进行降序排序
val sorts = counts.sortBy(_._2,false)
sorts.collect().foreach(println)
sc.stop()
} }
输出结果:
(ee,54)
(bb,52)
(cc,35)
(gg,32)
(aa,18)
(dd,16)
(ff,13)
2、例子2:先按照第一个元素升序排序,如果第一个元素相同,再进行第三个元素进行升序排序
package com.sudiyi.spark
import org.apache.spark.{SparkConf, SparkContext} /**
* @author xubiao
* SortBy是SortByKey的增强版
* 先按照第一个,再按照第三个元素进行升序排序
*/
object SparkSortByApplication { def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("SortSecond").setMaster("local[1]")
val sc = new SparkContext(conf)
val arr = Array((1, 6, 3), (2, 3, 3), (1, 1, 2), (1, 3, 5), (2, 1, 2))
val datas2 = sc.parallelize(arr)
val sorts2 = datas2.sortBy(e => (e._1,e._2))
sorts2.collect().foreach(println) sc.stop() } }
输出结果:
(1,1,2)
(1,3,5)
(1,6,3)
(2,1,2)
(2,3,3)
Spark排序之SortBy的更多相关文章
- Spark排序与去重遇见的问题
答案: Spark的distinct是通过聚集去重的,可以简单理解为group by去重: 代码1:是先去重之后再排序取limit20是正确的, 代码2:是先排序之后再到各个节点进行去重之后再limi ...
- Spark排序之SortByKey
sortByKey函数作用于Key-Value形式的RDD,并对Key进行排序. package com.test.spark import org.apache.spark.{SparkConf, ...
- Spark排序方式集锦
一.简介 spark中的排序一般可以使用orderBy或sort算子,可以结合负号.ASC/DESC和col进行简单排序.二次排序等情况 二.代码实现 package big.data.analyse ...
- 【Spark篇】---Spark中Transformations转换算子
一.前述 Spark中默认有两大类算子,Transformation(转换算子),懒执行.action算子,立即执行,有一个action算子 ,就有一个job. 通俗些来说由RDD变成RDD就是Tra ...
- spark 算子之RDD
map map(func) Return a new distributed dataset formed by passing each element of the source through ...
- spark中产生shuffle的算子
Spark中产生shuffle的算子 作用 算子名 能否替换,由谁替换 去重 distinct() 不能 聚合 reduceByKey() groupByKey groupBy() groupByKe ...
- Spark Core知识点复习-1
Day1111 Spark任务调度 Spark几个重要组件 Spark Core RDD的概念和特性 生成RDD的两种类型 RDD算子的两种类型 算子练习 分区 RDD的依赖关系 DAG:有向无环图 ...
- spark 机器学习 knn 代码实现(二)
通过knn 算法规则,计算出s2表中的员工所属的类别原始数据:某公司工资表 s1(训练数据)格式:员工ID,员工类别,工作年限,月薪(K为单位) 101 a类 8年 ...
- spark 系列之一 RDD的使用
spark中常用的两种数据类型,一个是RDD,一个是DataFrame,本篇主要介绍RDD的一些应用场景见代码本代码的应用场景是在spark本地调试(windows环境) /** * 创建 spark ...
随机推荐
- LeetCode全文解锁 √
分享一波大牛整理leetcode,方便整理思路 可以点击下载
- 使用 IntraWeb (34) - TIWAJAXNotifier
在异步事件中, 可以通过 TIWAJAXNotifier 发出一个通知(通过其 Notify 方法), 该通知会激发其 OnNotify 事件. 这一般用在: 当一个异步事件完成后, 立即处理随后的事 ...
- Iowait的成因、对系统影响及对策--systemtap
http://blog.csdn.net/yunlianglinfeng/article/details/51698607
- 解决IE9下交通银行网上银行无法输入密码的问题
自系统升级到 Win 7以后,突然发现用 IE9 浏览器登陆交通银行网上银行时,始终不能正常 输入密码.原来,非要进行特别的设置才可.现记录如下: 1.没有交通银行安装安全输入控件,安装即可. 当 ...
- App架构师实践指南一之App基础语法
第二章:App基础语法1.编程范式编程范型或编程范式(programming paradigm),是指从事软件工程的一类典型的编程风格.常见的编程范式有过程化(命令行)编程.事件驱动编程.面向对象编程 ...
- 奇怪吸引子---GenesioTesi
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 阮一峰的js教程,值得一读
http://javascript.ruanyifeng.com/introduction/intro.html
- virt-manager中为centos 7.2 扩容根分区
1. 打开virt-manager,添加一块磁盘. Add Hardware --> 选中Storage --> Manager (操作参考下图) 点击Manager之后,弹出Choose ...
- CentOS 7搭建Linux GPU服务器
1. CUDA Toolkit的安装 到https://developer.nvidia.com/cuda-gpus查询GPU支持的CUDA版本: 到https://developer.nvidia. ...
- SSL证书问题汇总
//SLL协议分析 注意:对SSL协议的功能 https://www.myssl.cn/tools/check-server-cert.html //SSL证书格式转换 https://www.it ...