FCN 32分析:
FCN 32s

FCN 32分析:的更多相关文章
- Linux下tcp协议socket的recv函数返回时机分析(粘包)
http://www.vckbase.com/index.php/wv/10http://blog.csdn.net/zlzlei/article/details/7689409 文章一: 当前在网络 ...
- 记一次Struts2 内核问题分析解决
问题场景描述 生产环境某个处理耗时比较长的接口,吞吐能力极差.客服反馈此功能长期处于毫无响应状态. 具体表现 系统启动后第一次调用耗时极慢,长时间不响应.紧随之后发起的请求也同时没有响应. 等待第一次 ...
- BZOJ1003 物流运输 最短路+DP
1003: [ZJOI2006]物流运输 Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条 ...
- HDOJ 2546饭卡(01背包问题)
http://acm.hdu.edu.cn/showproblem.php?pid=2546 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如 ...
- noi 8465 马走日
8465:马走日 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 1024kB 描述 马在中国象棋以日字形规则移动. 请编写一段程序,给定n*m大小的棋盘,以及马的初始位置(x,y ...
- bzoj1003 [ZJOI2006]物流运输
1003: [ZJOI2006]物流运输 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6300 Solved: 2597[Submit][Stat ...
- 《C/C++专项练习》 — (3)
序 第三次C/C++专项.嗯,要抗住打击,继续加油~ 错题分析与总结 1 . 在64位系统中.有例如以下类: class A { public: void *p1; private: void *p2 ...
- CS:APP3e 深入理解计算机系统_3e CacheLab实验
详细的题目要求和资源可以到 http://csapp.cs.cmu.edu/3e/labs.html 或者 http://www.cs.cmu.edu/~./213/schedule.html 获取. ...
- java对象大小
Java对象的内存布局:对象头(Header),实例数据(Instance Data)和对齐填充(Padding) 对象头在32位系统上占用8B,64位系统上占16B. 无论是32位系统还是64位系统 ...
随机推荐
- 使用pygal_maps_world展示世界地图
pygal.i18n在2.0版本以后改为pygal_maps_world.i18n获取国家码和国家名对应关系下载安装包:pygal_maps_world-1.0.2.tar.gz解压后命令行安装: p ...
- Bootstrap导航
前面的话 导航对于一位前端人员来说并不陌生.可以说导航是一个网站重要的元素组件之一,便于用户查找网站所提供的各项功能服务.本文将详细介绍Bootstrap导航 基础样式 Bootstrap框架中制作导 ...
- jenkins--svn+Email自动触发1(作业设置)
项目名称设置: svn设置: 触发构建设置: 构建加入sonar-scanner代码扫描: 邮件设置: 邮件触发器配置:
- BZOJ3786星系探索——非旋转treap(平衡树动态维护dfs序)
题目描述 物理学家小C的研究正遇到某个瓶颈. 他正在研究的是一个星系,这个星系中有n个星球,其中有一个主星球(方便起见我们默认其为1号星球),其余的所有星球均有且仅有一个依赖星球.主星球没有依赖星球. ...
- BZOJ3091城市旅行——LCT区间信息合并
题目描述 输入 输出 样例输入 4 5 1 3 2 5 1 2 1 3 2 4 4 2 4 1 2 4 2 3 4 3 1 4 1 4 1 4 样例输出 16/3 6/1 提示 对于所有数据满足 1& ...
- log4net 单独项目
首先参考:http://blog.csdn.net/feiying008/article/details/45440547 有时,我们需要将日志功能作为单独模块,用来以后嫁接到其他项目. 今天就来看看 ...
- MT【4】坐标平移后齐次化
简答:通过坐标平移可以将A点移到原点,设BC:mx’+ny’=1,联立坐标变换后的椭圆方程和BC,将$\frac{y}{x}$看成斜率k,得到关于k的一元二次方程,由题意两根之积为-1,可得.
- Min_25 筛
Min_25 筛 yyb好神仙啊 干什么用的 可以在\(O(\frac{n^{\frac 34}}{\log n})\)的时间内求积性函数\(f(x)\)的前缀和. 别问我为什么是这个复杂度 要求\( ...
- Android8.0运行时权限策略变化和适配方案
版权声明:转载必须注明本文转自严振杰的博客:http://blog.yanzhenjie.comAndroid8.0也就是Android O即将要发布了,有很多新特性,目前我们可以通过AndroidS ...
- CF438E The Child and Binary Tree(生成函数,NTT)
题目链接:洛谷 CF原网 题目大意:有 $n$ 个互不相同的正整数 $c_i$.问对于每一个 $1\le i\le m$,有多少个不同形态(考虑结构和点权)的二叉树满足每个点权都在 $c$ 中出现过, ...