原题:1374 - Power Calculus


题意:

最少用几次乘法或除法,可以从x得到x^n。(每次只能从已经得到的数字里选择两个进行操作)


举例:

x^31可以通过最少6次操作得到(5次乘,1次除)

x^2 = x*x

x^4 = (x^2)*(x^2)

x^8 = (x^4)*(x^4)

x^16 = (x^8)*(x^8)

x^32 = (x^16)*(x^16)

x^31 = (x^32)÷x


分析:

可以看到,每次从已得到的数字中选取两个操作,这样就有了枚举的思路。

这道题又是没有明显的枚举次数上限,所以很自然想到了用迭代加深搜索算法。

因为n的数据范围是1~1000,所以可以通过计算,预设最大的枚举层次数上限MAXD是13.

而且可以发现如果当前的数字num*2^(MAXD-d) < n,就没有继续搜的必要了,回溯(num是通过前d步得到的数字)

所以我们的IDA*算法思路基本上就完全了。


进一步优化:

如果只依靠上述的思路,写出来的程序要跑2.7s(上限是3s),所以属于刚刚好AC.

我们这里有很多种优化方法,我就说两个我用了的。

1. 寻找幂的时候,我们每次不应该从已得到数字里任意抽两个,这样效率很低。而且很容易出一道,我们每一次都是操作上一步得到的数字,所以这样只需要枚举另一个操作数就够了。

 #include <cstdio>
#include <cstring>
using namespace std;
const int MAXD = ;
int n, f[<<(MAXD - )], maxd, a[]; bool dfs(int d) {
if (a[d] == n) return true;
if (d < maxd && (a[d]<<(maxd - d)) >= n) {
for (int i = d; i >= ; i--)
for (int j = ; j < ; j++) {
int nextn = j ? a[d] + a[i] : a[d] - a[d - i];
if (nextn <= || f[nextn]) continue;
f[nextn] = ;
if (nextn <= ) continue;
a[d + ] = nextn;
if (dfs(d + )) return true;
f[nextn] = ;
}
}
return false;
}
int main() {
a[] = ;
while (scanf("%d", &n) == && n) {
if (n == ) { printf("0\n"); continue;}
for (maxd = ; maxd < MAXD; maxd++) {
memset(f, , sizeof(f));
f[] = ;
if (dfs()) break;
}
printf("%d\n", maxd);
}
return ;
}

2.打表。

因为n的范围是1~1000, 所以我们可以用稍微慢一点的算法,提前算出来结果,保存到文件里,然后再粘贴到提交的代码里。

比如我的代码是

    

 int main() {
freopen("ans_table", "w", stdout);
/*
some code.
*/
for(n = ; n <= ; n++) {
if (n == ) { printf("ans[%d] = 0;\n", i); continue;}
for (maxd = ; maxd < MAXD; maxd++) {
/*
some code.
*/
if (dfs(, )) break;
}
printf("ans[%d] = %d;\n", i, maxd);
}
return ;
}

这样我们就本地生成了文件"ans_table"。

里面的答案都是形如

ans[1] = 0;
ans[2] = 1;
ans[3] = 2;
ans[4] = 2;
ans[5] = 3;
ans[6] = 3;
ans[7] = 4;
ans[8] = 3;
ans[9] = 4;
ans[10] = 4;
ans[11] = 5;
ans[12] = 4;

相当于直接生成代码形式的表格。

    速度自然是0ms

Power Calculus 快速幂计算 (IDA*/打表)的更多相关文章

  1. 7-13 Power Calculus 快速幂计算 uva1374

    想到快速幂  但是这题用不上 用迭代加深搜索 注意启发函数为  当前最大数<<(maxx-d)  如果大于n则剪枝 注意跳出语句的两种写法   一种170ms  一种390ms !!! d ...

  2. 矩阵快速幂计算hdu1575

    矩阵快速幂计算和整数快速幂计算相同.在计算A^7时,7的二进制为111,从而A^7=A^(1+2+4)=A*A^2*A^4.而A^2可以由A*A得到,A^4可以由A^2*A^2得到.计算两个n阶方阵的 ...

  3. POJ 3233 Matrix Power Series——快速幂&&等比&&分治

    题目 给定一个 $n \times n$  的矩阵 $A$ 和正整数 $k$ 和 $m$.求矩阵 $A$ 的幂的和. $$S = A + A^2 + ... + A^k$$ 输出 $S$ 的各个元素对 ...

  4. UVa 1374 快速幂计算(dfs+IDA*)

    https://vjudge.net/problem/UVA-1374 题意:给出n,计算最少需要几次能让x成为x^n(x和已经生成的数相乘或相除). 思路:IDA*算法. 如果当前数组中最大的数乘以 ...

  5. uva 1374 快速幂计算

    #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #i ...

  6. UVa 1374 - Power Calculus——[迭代加深搜索、快速幂]

    解题思路: 这是一道以快速幂计算为原理的题,实际上也属于求最短路径的题目类型.那么我们可以以当前求出的幂的集合为状态,采用IDA*方法即可求解.问题的关键在于如何剪枝效率更高.笔者采用的剪枝方法是: ...

  7. POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)

    题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...

  8. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  9. ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)

    题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...

随机推荐

  1. C# - string 转为 DateTime(自定义)

    上代码: string dt = " 1 11 1961"; DateTime day; System.Globalization.DateTimeFormatInfo dtFor ...

  2. power desinger 学习笔记<八>

    转-PowerDesigner 把Comment复制到name中和把name复制到Comment 在使用PowerDesigner对数据库进行概念模型和物理模型设计时,一般在NAME或Comment中 ...

  3. 【原创】ZeroClipboard的时代或许已经过去了

    曾经,一个网页上要用Javascript实现网页内容的复制,其实是很麻烦的一件事情.虽然在这个问题上IE有其高大上的 window.clipboardData 方法支持直接复制指定内容,Firefox ...

  4. iOS开发UI篇——Button基础

    一.简单说明 一般情况下,点击某个控件后,会做出相应反应的都是按钮 按钮的功能比较多,既能显示文字,又能显示图片,还能随时调整内部图片和文字的位置 二.按钮的三种状态 1. normal(普通状态) ...

  5. iOS 获取通讯录里边的电话号码AddressBook

    1  首先导入库 <AddressBook/AddressBook.h> 2 然后在导入#import <AddressBook/AddressBook.h>文件 3 声明   ...

  6. jQuery 停止动画

    jQuery stop() 方法用于在动画或效果完成前对它们进行停止. 停止滑动 点击这里,向上/向下滑动面板 实例 jQuery stop() 滑动演示 jQuery stop() 方法. jQue ...

  7. iOS打包ipa 让别人设备安装你的App

    首先推荐一本书<一步一步学习iOS 5编程(第二版) – PDF 中文版>在一本学习IOS入门很不错的书籍,目前,这是第一本介绍iOS 5.x 和 Xcode 4.3 的中文版书籍,尤其适 ...

  8. Perl 中级教程 第5章课后习题

    5. 9. 1. 练习1 [5 分钟] 先不要运行程序, 看看你能否判断出这程序的哪部份出了问题?如果你看不出 来, 就可以运行一相程序, 得到些暗示, 来看是否能修改好: my %passenger ...

  9. 第三篇、调优之路 Apache调优

    1.  简介 在第一篇中整合了apache + tomcat ,利用了apache解析静态文件为tomcat解压.但是在测试机上发现两者性能不足,不能充分利用服务器的性能,该篇中将对apache进行性 ...

  10. IoC模式(控制反转)(转)

    转自:http://www.cnblogs.com/qqlin/archive/2012/10/09/2707075.html,写的很好,用C#代码解释控制反转,然后更进一步,提到依赖注入是控制反转的 ...