题意:给一个5*6的矩阵

1代表该位置的灯亮着, 0代表该位置的灯没亮

按某个位置的开关,可以同时改变 该位置 以及 该位置上方、下方、左方、右方, 共五个位置的灯的开、关(1->0, 0->1)

问能否将所有的灯关闭 若能 输出需要按哪些地方; 不能输出-1

高斯消元的入门题。

每个位置可以列出一个方程, 列出增广矩阵:

  每个位置可以形成增广矩阵的一行, 每行都有30个系数 分别代表(0到29号灯), 将 可以影响该位置改变的 位置(自己、上、下、左、右)对应的置1, 其余置0

  这样就形成了30*30的系数矩阵。

  将初始状态置入最后一列 就形成了增广矩阵

接下来只要解方程组即可。

化成约化阶梯后最后一列即为该方程组的解。

P.s. 需要注意的是:因为是矩阵表示的是灯的开关状态,所以解的过程中不应出现0、1以外的其余数字 即 01方程 用异或求解

 int a[][];  // 增广矩阵
int x[]; // 解
int free_x[]; // 标记是否为自由未知量 int n, m;
void debug()
{
for(int i=;i<n*n;i++)
{
for(int j=;j<n*n;j++)
printf("%d ", a[i][j]);
printf("\n");
}
} void Gauss(int n, int m) // n个方程 m个未知数 即 n行m+1列
{
//转换为阶梯形式
int col=, k, num=;
for(k=;k<n && col<m;k++, col++)
{//枚举行
int max_r=k;
for(int i=k+;i<n;i++)//找到第col列元素绝对值最大的那行与第k行交换
if(abs(a[i][col])>abs(a[max_r][col]))
max_r=i;
if(max_r!=k)// 与第k行交换
for(int j=col;j<m+;j++)
swap(a[k][j], a[max_r][j]);
if(!a[k][col])// 说明该col列第k行以下全是0了
{
k--;
free_x[num++]=col;
continue;
}
for(int i=k+;i<n;i++)// 枚举要删除的行
if(a[i][col])
for(int j=col;j<m+;j++)
a[i][j]^=a[k][j];
} // debug();
// printf("%d %d\n", col, k);
//
// for(int i=k;i<n;i++)
// if(a[i][col])
// return -1; // 无解 // if(k<m) //m-k为自由未知量个数
// {
// int stat=1<<(m-k);
// int ans=INT_MAX;
// for(int i=0;i<stat;i++)
// {
// int cnt=0;
// for(int j=0;j<m-k;j++)
// if(i&(1<<j))
// {
// x[free_x[j]]=1;
// cnt++;
// }
// else
// x[free_x[j]]=0;
// for(int j=k-1;j>=0;j--)
// {
// int tmp;
// for(tmp=j;tmp<m;tmp++)
// if(a[j][tmp])
// break;
// x[tmp]=a[j][m];
// for(int l=tmp+1;l<m;l++)
// if(a[j][l])
// x[tmp]^=x[l];
// cnt+=x[tmp];
// }
// if(cnt<ans)
// ans=cnt;
// }
// return ans;
// }
//
// 唯一解 回代
for(int i=m-;i>=;i--)
{
x[i]=a[i][m];
for(int j=i+;j<m;j++)
x[i]^=(a[i][j] && x[j]);
}
// int ans=0;
// for(int i=0;i<n*n;i++)
// ans+=x[i];
// return ans;
} void init()
{
n=, m=;
memset(a, , sizeof(a));
memset(x, , sizeof(x));
for(int i=;i<n;i++)
for(int j=;j<m;j++)
{
int t=i*m+j;
a[t][t]=;
if(i>)
a[(i-)*m+j][t]=;
if(i<n-)
a[(i+)*m+j][t]=;
if(j>)
a[i*m+j-][t]=;
if(j<m-)
a[i*m+j+][t]=;
}
} int main()
{
int t, ca=;
scanf("%d", &t);
while(t--)
{
init();
for(int i=;i<n*m;i++)
scanf("%d", &a[i][n*m]);
printf("PUZZLE #%d\n", ca++);
Gauss(n*m, n*m);
for(int i=;i<n;i++)
for(int j=;j<m;j++)
{
printf("%d", x[i*m+j]);
if(j==)
printf("\n");
else
printf(" ");
}
}
return ;
}

POJ 1222

[Gauss]POJ1222 EXTENDED LIGHTS OUT的更多相关文章

  1. poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8481   Accepted: 5479 Description In an ...

  2. [POJ1222]EXTENDED LIGHTS OUT(高斯消元,异或方程组)

    题目链接:http://poj.org/problem?id=1222 题意:开关是四连通的,每按一个就会翻转自己以及附近的四个格(假如有).问需要翻转几个,使他们都变成关. 把每一个灯看作一个未知量 ...

  3. [poj1222]EXTENDED LIGHTS OUT(高斯消元)

    题意:每个灯开启会使自身和周围的灯反转,要使全图的灯灭掉,判断灯开的位置. 解题关键:二进制高斯消元模板题. 复杂度:$O({n^3})$ #include<cstdio> #includ ...

  4. poj1222 EXTENDED LIGHTS OUT

    设输入矩阵为A,输出矩阵为B,目标矩阵为C(零矩阵). 方便起见,矩阵行列下标均从1开始. 考虑A矩阵元素a(i,j),B矩阵中与其相邻的元素 b(i,j),b(i - 1, j),b(i + 1,j ...

  5. POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组

    http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...

  6. 【高斯消元】【异或方程组】poj1222 EXTENDED LIGHTS OUT

    由于每个点的状态受到其自身和周围四个点的影响,所以可以这样建立异或方程组: 引用题解: http://hi.baidu.com/ofeitian/item/9899edce6dc6d3d2974452 ...

  7. EXTENDED LIGHTS OUT poj1222 高斯消元法

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6443   Accepted: 42 ...

  8. POJ 1222 EXTENDED LIGHTS OUT(反转)

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12616   Accepted: 8 ...

  9. POJ 1222 EXTENDED LIGHTS OUT(翻转+二维开关问题)

    POJ 1222 EXTENDED LIGHTS OUT 今天真是完美的一天,这是我在poj上的100A,留个纪念,马上就要期中考试了,可能后面几周刷题就没这么快了,不管怎样,为下一个200A奋斗, ...

随机推荐

  1. 给你看看我练习的oracle语句

    -------预算-- CREATE OR REPLACE VIEW V_YUSUAN_BGY_WZ20151204 AS SELECT tb_cube_fc05.pk_entity pk_org,/ ...

  2. 最新版spark1.1.0集群安装配置

    和分布式文件系统和NoSQL数据库相比而言,spark集群的安装配置还算是比较简单的: 很多教程提到要安装java和scala,但我发现spark最新版本是包含scala的,JRE采用linux内嵌的 ...

  3. Fluent Validation For .NET

    //.net 中数据验证,一个开源的项目,直接下载 1 using FluentValidation; public class CustomerValidator: AbstractValidato ...

  4. C# 打印多页tif

    注意点: 1.计算image对象总页数 image.GetFrameCount(FrameDimension.Page); 2.初始化当前页,并获取指定页内容 image.SelectActiveFr ...

  5. iOS项目里面如何清理缓存

    在正式讲解以前,请先看一下以下图片,在以下这款APP种设有清理缓存,开始我以为很复杂,在弄明白之后,其实就是几句代码就解决了.      在实际项目开发中,我们很多的文件都会缓存在沙盒里面,比如:照片 ...

  6. 【小丸类库系列】Excel操作类

    using Microsoft.Office.Interop.Excel; using System; using System.IO; using System.Reflection; namesp ...

  7. JavaScript 继承的几种模式

    /** * Created by 2016 on 2016/6/5. */ //1.原型链继承 //把子类的原型,定义为超类的实例 通过原型来访问超类的方法和属性 function Person(){ ...

  8. CSS 之 @media

    @media 版本:CSS2 兼容性:IE5+ 语法: @media  sMedia  {sRules} 取值: sMedia : 指定设备名称.请参阅设备类型 all, aural, braille ...

  9. (转载)SQL中导入图片

    SQL中导入图片 分类: 论坛精贴 2006-05-10 12:07 398人阅读 评论(0) 收藏 举报 sqlimage服务器insertlogingo 1.建立过程CREATE PROCEDUR ...

  10. Fluid Shopping Website 开发阶段性总结——第一周

    开发目的: 可链接微信公众号,无论是桌面端.移动端完美兼容,给用户提供不逊于原生App的用户体验.作为一个软件,有充分的可扩展性,便于未来增强开发.同时给一些正在尝试做OTO的朋友们提供一个平台,因为 ...