这题乍一看与半平面交并没有什么卵联系,然而每个靶子都可以转化为两个半平面。

scanf("%lf%lf%lf",&x,&ymin,&ymax);

于是乎就有ymin<=ax^2+bx<=ymax。(因为抛物线一定经过点(0,0),所以c=0)

考虑前一个有ax^2+bx>=ymin  <=>  ax^2+bx-ymin>=0。

#define A x^2

#define B x

#define C ymin

#define x' a

#define y' b

于是乎Ax'+By'+c>=0

这个式子貌似在哪见过的样子

于是乎上半平面交。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define pi (acos(-1.0))
#define maxn 200100
#define double long double
const long long inf=1e15;
int n,tot,sum; double sqr(double x){return x*x;} struct point{
double x,y;
}p[maxn]; struct line{
point from,to;
int id;
double slope;
}l[maxn],q[maxn],a[maxn]; point operator -(point a,point b){return(point){a.x-b.x,a.y-b.y};}
point operator +(point a,point b){return(point){a.x+b.x,a.y+b.y};}
double operator *(point a,point b){return a.x*b.y-a.y*b.x;}
bool operator ==(line a,line b){return a.slope==b.slope;}
bool operator <(line a,line b){
return a.slope<b.slope||(a.slope==b.slope && (a.to-a.from)*(b.to-a.from)<);
} point getpoint(line a,line b){
double t1=(b.to-a.from)*(a.to-a.from),t2=(a.to-a.from)*(b.from-a.from);
double t=t1/(t1+t2);
return (point){(b.from.x-b.to.x)*t+b.to.x,(b.from.y-b.to.y)*t+b.to.y};
} bool check(line a,line b,line c){
point d=getpoint(a,b);
return (c.to-c.from)*(d-c.from)<;
} bool bo(int x){
int cnt=;
for (int i=;i<=sum;i++) if (l[i].id<=x) a[++cnt]=l[i];
int head=,tail=;
q[]=a[],q[]=a[];
for (int i=;i<=cnt;i++){
while (head<tail && check(q[tail-],q[tail],a[i])) tail--;
while (head<tail && check(q[head+],q[head],a[i])) head++;
q[++tail]=a[i];
}
while (head<tail && check(q[tail-],q[tail],q[head])) tail--;
while (head<tail && check(q[head+],q[head],q[tail])) head++;
return tail>head+;
} int main(){
scanf("%d",&n);
l[++tot].to=(point){-inf,inf},l[tot].from=(point){inf,inf};
l[++tot].to=(point){inf,inf},l[tot].from=(point){inf,-inf};
l[++tot].to=(point){inf,-inf},l[tot].from=(point){-inf,-inf};
l[++tot].to=(point){-inf,-inf},l[tot].from=(point){-inf,inf};
for (int i=;i<=n;i++){
double x,y1,y2;
scanf("%llf%llf%llf",&x,&y1,&y2);
double A=sqr(x),B=x,C=-y1;
l[++tot].from=(point){-,(A-C)/B},l[tot].to=(point){,(-A-C)/B},l[tot].id=i;
C=-y2;
l[++tot].from=(point){,(-A-C)/B},l[tot].to=(point){-,(A-C)/B},l[tot].id=i;
} for (int i=;i<=tot;i++) l[i].slope=atan2(l[i].to.y-l[i].from.y,l[i].to.x-l[i].from.x);
sort(l+,l+tot+);
sum=unique(l+,l+tot+)-l;
sum--;
int l=,r=n;
while (l<=r){
int mid=(l+r)>>;
if (bo(mid)) l=mid+;
else r=mid-;
}
printf("%d",r);
return ;
}

bzoj2732: [HNOI2012]射箭 半平面交的更多相关文章

  1. bzoj 2732: [HNOI2012]射箭 半平面交

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2732 题解: 这道题的做法我不想说什么了... 其他题解都有说做法... 即使是我上午做 ...

  2. bzoj 2732 射箭 半平面交

    2732: [HNOI2012]射箭 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2531  Solved: 848[Submit][Status] ...

  3. 洛谷P3222 [HNOI2012]射箭(计算几何,半平面交,双端队列)

    洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid ...

  4. [bzoj2732][HNOI2012]射箭

    Description 沫沫最近在玩一个二维的射箭游戏,如下图所示,这个游戏中的$x$轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴.沫沫控制一个位于$(0, ...

  5. 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交

    4515: [Sdoi2016]游戏 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 304  Solved: 129[Submit][Status][ ...

  6. poj3335 半平面交

    题意:给出一多边形.判断多边形是否存在一点,使得多边形边界上的所有点都能看见该点. sol:在纸上随手画画就可以找出规律:按逆时针顺序连接所有点.然后找出这些line的半平面交. 题中给出的点已经按顺 ...

  7. POJ3525 半平面交

    题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...

  8. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  9. bzoj2618[Cqoi2006]凸多边形 半平面交

    这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...

随机推荐

  1. hibernate4.0+版本和3.0+版本的区别总结

    自己总结下hibernate4.1版本中的新特性和hibernate3.3做区别 1.数据库方言设置 <property name=”dialect”>org.hibernate.dial ...

  2. IntelliJ 直接编辑国际化文件(properties)方法

    IntelliJ 直接编辑国际化文件(properties)方法 settings-File Encodings 右下角 Transparent native-to-ascii conversion的 ...

  3. Hadoop新手学习线路指导

    对于我们新手入门学习hadoop大数据存储的朋友来说,首先了解一下云计算和云计算技术是有必要的.下面先是介绍云计算和云计算技术的:              云计算,是一种基于互联网的计算方式,通过这 ...

  4. HW5.17

    import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner i ...

  5. HDOJ-ACM1023(JAVA)

    题意:输入栈的大小,输出可能的出栈顺序的个数. 这道题,如果做了1022,那就只要在上面改改就行了, 第一想法是加上全排列-----结果是正确的,但是绝对会超时 验证性的实现了:(Time Limit ...

  6. VPS选购及辨别vps虚拟化技术

    现在国内外的VPS(Virtual Private Server)服务商非常多,每个服务商使用的VPS架构都不同.VPS属于虚拟化服务器,中文名:虚拟专用服务器. 常见的VPS虚拟化架构有多种:Ope ...

  7. windows进程间通信 .

    摘 要: 随着人们对应用程序的要求越来越高,单进程应用在许多场合已不能满足人们的要求.编写多进程/多线程程序成为现代程序设计的一个重要特点,在多进程程序设计中,进程间的通信是不可避免的.Microso ...

  8. EasyUI实例源码

    jQuery+EasyUI实例源码 http://www.51aspx.com/code/jQueryEasyUIExample ASP.NET MVC+EF+EasyUI权限 http://www. ...

  9. NoSQL 数据库产品学习总结(一)

    NoSQL 数据库产品学习总结(一) 本篇文章共分为四个章节,会陆续整理下 Memcached.Redis.tair.mongodb.hbase.SequoiaDB. Cassandra的相关知识. ...

  10. Android代码中动态设置图片的大小(自动缩放),位置

    项目中需要用到在代码中动态调整图片的位置和设置图片大小,能自动缩放图片,用ImageView控件,具体做法如下: 1.布局文件 <RelativeLayout xmlns:android=&qu ...