USACO 2.2 Subset Sums 集合(subset)
Description
对于从1到N的连续整集合,能划分成两个子集合,且保证每个集合的数字和是相等的。
举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的:
- {3} and {1,2}
这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)
如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分发的子集合各数字和是相等的:
- {1,6,7} and {2,3,4,5} {注 1+6+7=2+3+4+5}
- {2,5,7} and {1,3,4,6}
- {3,4,7} and {1,2,5,6}
- {1,2,4,7} and {3,5,6}
给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出。
好 废话不多说这是我在Ubuntu下打的第一个代码,个人认为Ubuntu下很多界面较好 风格也还行(又说废话了)。。。
这道题是一个dp 大致的意思是从1-n的每个数都给你一个 然后叫你找有多少种可能a+b+c...==x+y+z(当然a,b,c,x,y,都属于这n个数)同时 这些数都要用完而且不能重复用
刚刚看题目颇为不解 这用dp该怎么做 明显是坑爹嘛 后来实在想不出来就去baidu了(。。。) 然后看到一种普遍的解法就是看作一个01背包然后“
如果M=n*(n+1)/2是奇数,则没有分法。如果是偶数,背包容量为M/2,dp[k] += dp[k-i],(i=1,2,...,n)计算k的时候为避免重算,
需倒着进行。”(这不还是看不懂嘛(请原谅我的愚笨))
再后来一想[1,n]这个区间里所有数不久形成了一个an=n的等差数列嘛 那么根据求和公式sn=n+n*(n-1)/2 =n*(n+1)/2 既然这样 要使两边相等 那么
l(左边的和)=r(右边的和)=n*(n+1)/4 这样的话如果算出来的n*(n+1)/4为小数的话那么肯定就不可能有解了嘛 所以只要在开始判断一下n*(n+1)/4能不能除尽(即判断n*(n+1)%4是否为0) 然后如果除不尽就直接return 掉就行了。
在初步的判断完以后 我们就要开始用dp大法了 可以看作有n个物品 给你n*(n+1)/4的质量 这一次的分法就等于这一次j比i多出来的数的分法加上原来i的分法
代码如下:
#include<iostream>
using namespace std;
const int maxn=+;
long long f[];
int n,s;
int main()
{
cin>>n;
s=n*(n+);
if(s%!=)
{
cout<<<<endl;
return ;
}
s/=;
f[]=;
for(int i=;i<=n;i++)
for(int j=s;j>=i;j--)
f[j]+=f[j-i];
cout<<f[s]/<<endl;
return ;
}
USACO 2.2 Subset Sums 集合(subset)的更多相关文章
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- 【USACO 2.2】Subset Sums (DP)
N (1 <= N <= 39),问有多少种把1到N划分为两个集合的方法使得两个集合的和相等. 如果总和为奇数,那么就是0种划分方案.否则用dp做. dp[i][j]表示前 i 个数划分到 ...
- DP | Luogu P1466 集合 Subset Sums
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...
- Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验
Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...
- Project Euler P105:Special subset sums: testing 特殊的子集和 检验
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...
- Project Euler 103:Special subset sums: optimum 特殊的子集和:最优解
Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall cal ...
- Codeforces348C - Subset Sums
Portal Description 给出长度为\(n(n\leq10^5)\)的序列\(\{a_n\}\)以及\(m(m\leq10^5)\)个下标集合\(\{S_m\}(\sum|S_i|\leq ...
- CodeForces 348C Subset Sums(分块)(nsqrtn)
C. Subset Sums time limit per test 3 seconds memory limit per test 256 megabytes input standard inpu ...
- spoj-SUBSUMS - Subset Sums
SUBSUMS - Subset Sums Given a sequence of N (1 ≤ N ≤ 34) numbers S1, ..., SN (-20,000,000 ≤ Si ≤ 20, ...
随机推荐
- 为什么 UDP 有时比 TCP 更有优势
随着网络技术飞速发展,网速已不再是传输的瓶颈,UDP协议以其简单.传输快的优势,在越来越多场景下取代了TCP,如网页浏览.流媒体.实时游戏.物联网. 1.网速的提升给UDP稳定性提供可靠网络保障 CD ...
- docker学习资料整理(持续更新中..)
docker最近可以说火得一踏糊涂,跟 51大神在交流技术的时候这个东西会多次被提到,当我们还玩vm+linux/freebsd的时候,人家已经上升到更高层次了,这就是差距,感觉好高大上的样子,技术之 ...
- WinForm TextBox自定义扩展方法数据验证
本文转载:http://www.cnblogs.com/gis-crazy/archive/2013/03/17/2964132.html 查看公司项目代码时,存在这样一个问题:winform界面上有 ...
- docker-proxy 实现容器代理访问
可实现多个容器web主机对外提供访问 运行代理容器 nginx-proxy docker run -d -p 80:80 -v /var/run/docker.sock:/tmp/docker.soc ...
- [rxjs] Shares a single subscription -- publish()
If have an observable and you subscribe it twice, those tow subscritions have no connection. console ...
- BZOJ 2754([SCOI2012]喵喵叫的星球-统计序列的后缀阵列中子序列出现次数)
2754: [SCOI2012]喵喵叫的星球 Time Limit: 20 Sec Memory Limit: 128 MB Submit: 805 Solved: 380 [id=2754&qu ...
- Btrace
http://www.iteye.com/topic/1005918 背景 周五下班回家,在公司班车上觉得无聊,看了下btrace的源码(自己反编译). 一些关于btrace的基本内容,可以看下我早起 ...
- oracle授权另外一个用户访问自己创建的数据对象
oracle安装好之后,有一个默认的scott用户,该用户有一个默认的emp表,怎样让新创建的用户也能够访问这个表呢? 授权xiaoming这个用户访问emp表,但是xiaoming只有select权 ...
- linux64下安装swftools
在文档转换器中,需要在linux上安装swftools,经历了一番曲折过程终于安装成功.swftools安装包从http://www.swftools.org/download.html上面下载. 在 ...
- HDU 5637 Transform
题意: 有两种变换: 1. 改变此数二进制的某一位(1变成0 或者 0变成1) 2. 让它与给出的n个数当中的任意一个做异或运算 给你两个数s, t,求从s到t最少要经过几步变换,一共m组查询思路: ...