Description

对于从1到N的连续整集合,能划分成两个子集合,且保证每个集合的数字和是相等的。
举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的:

  • {3} and {1,2}

这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)
如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分发的子集合各数字和是相等的:

  • {1,6,7} and {2,3,4,5} {注 1+6+7=2+3+4+5}
  • {2,5,7} and {1,3,4,6}
  • {3,4,7} and {1,2,5,6}
  • {1,2,4,7} and {3,5,6}

给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出。


  好  废话不多说这是我在Ubuntu下打的第一个代码,个人认为Ubuntu下很多界面较好  风格也还行(又说废话了)。。。

  这道题是一个dp  大致的意思是从1-n的每个数都给你一个  然后叫你找有多少种可能a+b+c...==x+y+z(当然a,b,c,x,y,都属于这n个数)同时  这些数都要用完而且不能重复用

  刚刚看题目颇为不解  这用dp该怎么做  明显是坑爹嘛  后来实在想不出来就去baidu了(。。。)  然后看到一种普遍的解法就是看作一个01背包然后“

如果M=n*(n+1)/2是奇数,则没有分法。如果是偶数,背包容量为M/2,dp[k] += dp[k-i],(i=1,2,...,n)计算k的时候为避免重算,

需倒着进行。”(这不还是看不懂嘛(请原谅我的愚笨))

  再后来一想[1,n]这个区间里所有数不久形成了一个an=n的等差数列嘛   那么根据求和公式sn=n+n*(n-1)/2 =n*(n+1)/2  既然这样 要使两边相等 那么

l(左边的和)=r(右边的和)=n*(n+1)/4  这样的话如果算出来的n*(n+1)/4为小数的话那么肯定就不可能有解了嘛  所以只要在开始判断一下n*(n+1)/4能不能除尽(即判断n*(n+1)%4是否为0)  然后如果除不尽就直接return 掉就行了。

  在初步的判断完以后  我们就要开始用dp大法了   可以看作有n个物品  给你n*(n+1)/4的质量   这一次的分法就等于这一次j比i多出来的数的分法加上原来i的分法


  代码如下:

 #include<iostream>
using namespace std;
const int maxn=+;
long long f[];
int n,s;
int main()
{
cin>>n;
s=n*(n+);
if(s%!=)
{
cout<<<<endl;
return ;
}
s/=;
f[]=;
for(int i=;i<=n;i++)
for(int j=s;j>=i;j--)
f[j]+=f[j-i];
cout<<f[s]/<<endl;
return ;
}

USACO 2.2 Subset Sums 集合(subset)的更多相关文章

  1. 洛谷P1466 集合 Subset Sums

    P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...

  2. 【USACO 2.2】Subset Sums (DP)

    N (1 <= N <= 39),问有多少种把1到N划分为两个集合的方法使得两个集合的和相等. 如果总和为奇数,那么就是0种划分方案.否则用dp做. dp[i][j]表示前 i 个数划分到 ...

  3. DP | Luogu P1466 集合 Subset Sums

    题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...

  4. Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验

    Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...

  5. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

  6. Project Euler 103:Special subset sums: optimum 特殊的子集和:最优解

    Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall cal ...

  7. Codeforces348C - Subset Sums

    Portal Description 给出长度为\(n(n\leq10^5)\)的序列\(\{a_n\}\)以及\(m(m\leq10^5)\)个下标集合\(\{S_m\}(\sum|S_i|\leq ...

  8. CodeForces 348C Subset Sums(分块)(nsqrtn)

    C. Subset Sums time limit per test 3 seconds memory limit per test 256 megabytes input standard inpu ...

  9. spoj-SUBSUMS - Subset Sums

    SUBSUMS - Subset Sums Given a sequence of N (1 ≤ N ≤ 34) numbers S1, ..., SN (-20,000,000 ≤ Si ≤ 20, ...

随机推荐

  1. use isSubstring to check if one word is a rotation of another.

      1: /// <summary> 2: /// Assume you have a method isSubstring which checks if one word is a s ...

  2. zz android 系统 makefile文件(Android.mk)组织结构

    Android.mk脚本结构 下面是main.mk文件包含关系,本文档主要说明的就是这些文件里到底做了什么.(这个文件被根目录下的makefile文件包含) 一.     main.mk 1.检查版本 ...

  3. Java intern()方法

    intern()方法: public String intern() JDK源代码如下图: 返回字符串对象的规范化表示形式. 一个初始时为空的字符串池,它由类 String 私有地维护. 当调用 in ...

  4. iOS开发总结-UITableView 自定义cell和动态计算cell的高度

    UITableView cell自定义头文件:shopCell.h#import <UIKit/UIKit.h>@interface shopCell : UITableViewCell@ ...

  5. c#类的初始化顺序

    本文转载:http://www.cnblogs.com/ybhcolin/archive/2010/09/24/1834219.html c#类的初始化顺序 类在初始化时的执行顺序,依次如下: 1: ...

  6. MFC ListControl使用方法

    在原来博客中有:MF CListControl 简单功能使用 推荐文章:MFC类CtrlList用法 今天又又一次来介绍点新东西:双击击listcontrol  做出响应.当然你能够做的还有非常多,比 ...

  7. 关于cocos2d-x精灵加亮及变灰效果

    //根据现有CCSprite,变亮和变灰 static CCSprite* graylightWithCCSprite(CCSprite* oldSprite,bool isLight) { //CC ...

  8. 对于Maven管理的项目制定虚拟目录

    基于Maven管理的web项目结构: target目录是用来存放项目打包之后生成的文件的目录,此目录中的文件必须调用mvn clean package后才能生成, 如果把虚拟目录设置在此目录中,则每次 ...

  9. Mysql Join语法解析与性能分析详解

    一.Join语法概述 join 用于多表中字段之间的联系,语法如下: ... FROM table1 INNER|LEFT|RIGHT JOIN table2 ON conditiona table1 ...

  10. Objective-C 内存管理与高级环境编程 阅读分享

    常用的调试私有API uintptr_t objc_rootRetainCount(id obj) _objc_autoreleasePoolPrint();//查看自动释放池中的对象 LLVM cl ...