题目描述

设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。

若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

(1)tree的最高加分

(2)tree的前序遍历

输入输出格式

输入格式:

第1行:一个整数n(n<30),为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。

输出格式:

第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。

输入输出样例

输入样例#1:

5
5 7 1 2 10
输出样例#1:

145
3 1 2 4 5 其实还是比较水的题,因为是中序遍历,所以,根节点在中间,那么就是一个枚举根节点划分区间,有点像石子合并。
至于怎么求前序遍历,可以在递归的时候存储一遍,一旦更新值,就将祖先也更新处理,不是很难。
 #include <iostream>
#include <fstream>
#include <cstdlib>
#include <cstring>
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
using namespace std;
int cnt_node=;
int gra_node[]={};
int jiyi[][]={};
int root[][]={};
int dg(int ks,int js);
void out_DLR(int ks,int js); int dg(int ks,int js){
if(ks==js)return gra_node[ks];
if(ks+==js)return gra_node[ks]+gra_node[js];
if(jiyi[ks][js]!=-)return jiyi[ks][js];
int tem=;
tem=dg(ks+,js)+gra_node[ks];
root[ks][js]=ks;
for(int x=ks+;x<js;x++){
int b=dg(ks,x-)*dg(x+,js)+gra_node[x];
if(b>tem){tem=b;root[ks][js]=x;}
}
int b=dg(ks,js-);
if(b>tem){tem=b;root[ks][js]=js;}
jiyi[ks][js]=tem;
return tem;
} void out_DLR(int ks,int js){
if(ks==js){cout<<ks<<" ";return;}
if(ks+==js){cout<<ks<<" "<<js<<" ";return;}
cout<<root[ks][js]<<" ";
out_DLR(ks,root[ks][js]-);
out_DLR(root[ks][js]+,js);
return;
} int main(int argc, char** argv) {
cin>>cnt_node;
for(int x=;x<=cnt_node;x++)cin>>gra_node[x]; memset(jiyi,-,sizeof(jiyi));
int ans=dg(,cnt_node);
cout<<ans<<endl;
out_DLR(,cnt_node);
return ;
}

洛谷 P1040 加分二叉树的更多相关文章

  1. 洛谷P1040 加分二叉树(区间dp)

    P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...

  2. [洛谷P1040] 加分二叉树

    洛谷题目链接:加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di ...

  3. 洛谷P1040 加分二叉树(树形dp)

    加分二叉树 时间限制: 1 Sec  内存限制: 125 MB提交: 11  解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...

  4. 洛谷P1040 加分二叉树【记忆化搜索】

    题目链接:https://www.luogu.org/problemnew/show/P1040 题意: 某一个二叉树的中序遍历是1~n,每个节点有一个分数(正整数). 二叉树的分数是左子树分数乘右子 ...

  5. [NOIP2003] 提高组 洛谷P1040 加分二叉树

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  6. 洛谷P1040 加分二叉树题解

    dp即可 \(f[i][j]\)表示i到j的加分 相当于区间dp了 #include<cstdio> using namespace std; int v[50]; int f[55][5 ...

  7. 【洛谷】P1040 加分二叉树

    [洛谷]P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数 ...

  8. P1040 加分二叉树

    转自:(http://www.cnblogs.com/geek-007/p/7197439.html) 经典例题:加分二叉树(Luogu 1040) 设一个 n 个节点的二叉树 tree 的中序遍历为 ...

  9. P1040 加分二叉树 区间dp

    题目描述 设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第ii个节 ...

随机推荐

  1. PHP Ajax简单实例

    最近学习Jquery Ajax部分,通过简单例子,比较了下post,get方法的不同 HTML部分 <html> <head> <title>jQuery Ajax ...

  2. (转)应用内存优化之OnLowMemory&OnTrimMemory

    1.应用内存onLowMemory& onTrimMemory优化 onLowMemory& onTrimMemory简介:OnLowMemory是Android提供的API,在系统内 ...

  3. js调用.net后台事件,和后台调用前台等方法以及js调用服务器控件的方法

    http://blog.csdn.net/deepwishly/article/details/6670942  ajaxPro.dll基础教程(前台调用后台方法,后台调用前台方法) 1. javaS ...

  4. 【转】Hibernate各种主键生成策略与配置详解

    原文转自:Fra~~kaka's Blog 1.assigned 主键由外部程序负责生成,在 save() 之前必须指定一个.Hibernate不负责维护主键生成.与Hibernate和底层数据库都无 ...

  5. Day16 DOM &jQuery

    一.本节主要内容 JavaScript 正则表达式 字符串操作的三个方法 DOM(知道就行,一般使用jQuery) 查找: 直接查找: document.getElementById 根据ID获取一个 ...

  6. How To mount/Browse Windows Shares【在linux{centos}上挂载、浏览window共享】

    How to mount remote Windows shares Contents Required packages Basic method Better Method Even-better ...

  7. 关于C# 调用 C dll时,抓获C的异常

    最近一直被C# 调用native code时的内存错误,各种错误所困扰.而且在.net 4.0中非托管代码的异常不能被托管代码抓获,导致程序直接crash. 最终找到了.net 的方法.MSDN有关于 ...

  8. python调用java

    这么个标题多少有点蛋疼的感觉,两个都是互联网时代的语言,学习成本和执行效率也差不多,之所以会产生这种需求,多半是想在python中引用java的类,例如安卓和hadoop的生态圈,基本是java代码的 ...

  9. Silverlight中在MVVM模式下对DatagridRow选择控件封装

    在项目中,凡是涉及到表格的地方用的最多的控件,自然少不了DataGrid的身影,它明了的展示各种数据让人十分喜欢.现在要实现一个功能,使DataGrid具有全选和项选中的功能,如果在传统后台代码中完成 ...

  10. ServiceStack.RabbitMQ在站点中使用时导致静态页面无法正常解析

    当站点中集成ServiceStack.RabbitMQ时快速处理异步请求时,官方建议初始化如下: public class AppHost : AppHostHttpListenerBase { pu ...