Problem:

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given height = [2,1,5,6,2,3],
return 10.

Analysis:

This problem is very very tirkcy, but elegnat!

The idea behind the solution is super powerful, you should clearly think about it.
Possible solution:
For each element in the height array.
1. go right until nums[left] < cur_height
2. then go left until nums[right] < cur_height
Then caculated the area of rectanlge of the encolsed region: cur_height * [(right-1) - (left-1) - 1]
They key point for each element is to find out the left broader and right broader.
Apparently, this method would take O(n^2). Can we do it more smartly?
iff height[cur-1]'s boundary is clear, if we still compare all elements before height[cur-1], which were already compared by height[cur-1]. There must be way to avoid those uncessary comparison. Algorithm:
Take advantage of a stack, the stack's elments are always in the "small-to-large" order.
Step 1: scan the height array from left to right.
(While) Once the current element <= top element at the stack. we pop out an element.
for (int i = 0; i < height.length; i++) {
while (!stack.isEmpty() && height[i] <= height[stack.peek()]) {
...
}
Note: this can guarantee all elements in the stack array in the ascending order. For each poped element, we can get its left border and right border, through following way.
1. the stack still have elements.
(not included)left border: the current top element in the stack, since it is the first element smaller than the poped element.
(not included)right border: the current element height[i]. Since only when "height[i] <= height[stack.peek()]", the poped element appears. The rectangle's area: (right border-1) - (left border+1) + 1 = (i - 1) - (stack.peek()+1) + 1 = (i - stack.peek() + 1) * cur_height. 2. the stack does not have elements.
(included)left border: It means all elements appear before the poped element are actually larger than the poped element, we could start from the first element of the array.
(not included)right border: The current element height[i]. Since only when "height[i] <= height[stack.peek()]", the poped element appears. The rectangle's area : (right border-1) - (left border) + 1 = (i - 1) - (0) + 1 = i * cur_height Implementation:
-------------------------------------------------------------------------------------------------
for (int i = 0; i < height.length; i++) {
while (!stack.isEmpty() && height[i] <= height[stack.peek()]) {
int cur_height = height[stack.pop()];
cur_max = stack.isEmpty() ? i*cur_height : (i-stack.peek()-1)*cur_height;
max = Math.max(max, cur_max);
}
stack.push(i);
}
------------------------------------------------------------------------------------------------- One idea should be kept in mind:
When we push a element into the stack, we pop out all elements larger than it.
Thus when we need to get left broder, we can directly get from stack.peek() after the poped operation. Since for all elements appeared after the pushed element, must take the pushed element as left border. Those poped elements would not affect them. <What a great idea!> Note: In this problem, we actually set one 0 at left side and one 0 at right side of the height array.
0 [height] 0.
For the above question, we must take care the case when all height elements were scaned, but there are still elements in the stack, thus we must use the right fake border. nums[height] = 0.

Solution:

public class Solution {
public int largestRectangleArea(int[] height) {
if (height == null || height.length == 0)
return 0;
Stack<Integer> stack = new Stack<Integer> ();
int max = 0, cur_max = 0;
for (int i = 0; i < height.length; i++) {
while (!stack.isEmpty() && height[i] <= height[stack.peek()]) {
int cur_height = height[stack.pop()];
cur_max = stack.isEmpty() ? i*cur_height : (i-stack.peek()-1)*cur_height;
max = Math.max(max, cur_max);
}
stack.push(i);
}
while (!stack.isEmpty()) {
int cur_height = height[stack.pop()];
cur_max = stack.isEmpty() ? height.length*cur_height : (height.length-stack.peek()-1)*cur_height;
max = Math.max(max, cur_max);
}
return max;
}
}

[LeetCode#84]Largest Rectangle in Histogram的更多相关文章

  1. LeetCode 84. Largest Rectangle in Histogram 单调栈应用

    LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...

  2. [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  3. LeetCode 84. Largest Rectangle in Histogram 直方图里的最大长方形

    原题 Given n non-negative integers representing the histogram's bar height where the width of each bar ...

  4. [leetcode]84. Largest Rectangle in Histogram直方图中的最大矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  5. leetCode 84.Largest Rectangle in Histogram (最大矩形直方图) 解题思路和方法

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  6. [leetcode]84.Largest Rectangle in Histogram ,O(n)解法剖析

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  7. 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...

  8. 84. Largest Rectangle in Histogram

    https://www.cnblogs.com/grandyang/p/4322653.html 1.存储一个单调递增的栈 2.如果你不加一个0进去,[1]这种情况就会输出结果0,而不是1 3.单调递 ...

  9. 刷题84. Largest Rectangle in Histogram

    一.题目说明 题目84. Largest Rectangle in Histogram,给定n个非负整数(每个柱子宽度为1)形成柱状图,求该图的最大面积.题目难度是Hard! 二.我的解答 这是一个 ...

随机推荐

  1. Grant-Permission.ps1

    Grant-Permission.ps1 Download the EXE version of SetACL 3.0.6 for 32-bit and 64-bit Windows. Put set ...

  2. Android canvas rotate():平移旋转坐标系至任意原点任意角度-------附:android反三角函数小结

    自然状态下,坐标系以屏幕左上角为原点,向右是x正轴,向下是y正轴.现在要使坐标系的原点平移至任一点O(x,y),且旋转a角度,如何实现? 交待下我的问题背景,已知屏幕上有两点p1和p2,构成直线l.我 ...

  3. less编码规范

    Less 编码规范 简介 因为自己最近写css用的比较多还是less,整理了一份less规范, 代码组织 代码按如下形式按顺序组织: @import 变量声明 样式声明 // ✓ @import &q ...

  4. 前后端分离--构建前端Mock Server--windows部署rap

    mock:模拟的,虚假的 mock server:模拟服务,模拟请求,模拟虚假数据 为了前后端更好的分工,接口文档是必须的,前后端都根据接口文档写代码,然后对接接口就行了. 但是,后端跟不上前端节奏, ...

  5. volatile用处说明

      在JDK1.2之前,Java的内存模型实现总是从主存(即共享内存)读取变量,是不需要进行特别的注意的.而随着JVM的成熟和优化,现在在多线程环境下volatile关键字的使用变得非常重要. 在当前 ...

  6. 前端----表格的具体使用(jquery)

    表格在页面布局中常常会用到.在不同的框架中有不同的使用方法,现在,我先总结下表格在jquery中具体使用: 1.增--insertAfter() function addTr(){ $("& ...

  7. WampServer修改MySQL密码

    WampServer安装后密码是空的,需要设置一下 一般有两种方式: 一是通过phpMyAdmin直接修改: 二是使用WAMP的MySql控制台修改. 第一种: ①在phpMyAdmin界面中点击[用 ...

  8. P次方数 英雄会 csdn 高校俱乐部

    题目: 一个整数N,|N| >= 2, 如果存在整数x,使得N = x * x * x... (p个x相乘) =x^p,则称N是p次方数,给定32位内的整数N,求最大的P.例如N=5,输出1,N ...

  9. centos 6.0中文输入法的设置

    我的centos 6.0 是全英文,中间写代码需要用到中文注释,自己摸索了下,搞好了就做个记录. 1).开机进入桌面,左上角有Applications , Places, System三个可扩展通道, ...

  10. JS禁止横竖屏切换,强制横竖屏显示

    js判断屏幕横竖屏: function orient() { //alert('gete'); if (window.orientation == 0 || window.orientation == ...