洛谷题目链接:[CQOI2007]余数求和

题目背景

数学题,无背景

题目描述

给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29

输入输出格式

输入格式:

两个整数n k

输出格式:

答案

输入输出样例

输入样例#1:

10 5

输出样例#1:

29

说明

30%: n,k <= 1000

60%: n,k <= 10^6

100% n,k <= 10^9


一句话题意: 给出\(n,k(n,k<=10^9)\),求$$\sum_{i=1}^{n}k\mod i$$


题解: 学习这个之前我们首先需要知道什么是整除分块.

那么对于一个块内,所有的\(\lfloor \frac n i \rfloor\)都是一样的.但是如果我还想让一个块内所有的\(\lfloor \frac n i \rfloor\)都一样该怎么办呢?我们来看一张图(竖线是块与块的分界线):

其实我们可以将原来的一个块再拆成几个块再计算.

既然知道了这个方法,我们就可以继续化简式子了.

\[ans=\sum_{i=1}^{n}k\mod i
\]

\[ans=\sum_{i=1}^{n}k-\lfloor \frac{k}{i}\rfloor \times i
\]

根据我们分的块,在同一个块内的\(\lfloor \frac{k}{i}\rfloor\)和\(\lfloor \frac{n}{i}\rfloor\)是一样的,所以这个块内的答案也就可以用\((r-l+1) \times (k \mod l+k \mod r)/2\)表示,然后再判断下一个区间的位置就可以了.

很好想的,代码也很好理解,如果不懂可以看代码再理解一下.

#include<bits/stdc++.h>
using namespace std;
typedef int _int;
#define int long long int n, k, ans = 0; _int main(){
cin >> n >> k;
int l = 1, rn, rk, lim = min(n, k);
while(l <= lim){
rn = n/(n/l), rk = k/(k/l);
if(rn < rk) ans += (rn-l+1)*(k%l+k%rn)/2, l = rn+1;
else ans += (rk-l+1)*(k%l+k%rk)/2, l = rk+1;
}
if(lim == k) ans += (n-k)*k;
cout << ans << endl;
return 0;
}

[洛谷P2261] [CQOI2007]余数求和的更多相关文章

  1. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  2. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  3. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  4. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  5. 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块

    参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...

  6. 【洛谷P2261】余数求和

    题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...

  7. 洛谷 2261 [CQOI2007]余数求和

    题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...

  8. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  9. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

随机推荐

  1. 20145214 《Java程序设计》第10周学习总结

    20145214 <Java程序设计>第10周学习总结 学习内容总结 计算机网络概述 在计算机网络中,现在命名IP地址的规定是IPv4协议,该协议规定每个IP地址由4个0-255之间的数字 ...

  2. java报错:Exception in thread "main" java.lang.NoSuchFieldError: INSTANCE

    Exception in thread "main" java.lang.NoSuchFieldError: INSTANCE at org.apache.http.conn.ss ...

  3. iOS- 网络访问JSON数据类型与XML数据类型的实现思路及它们之间的区别

    1.JSON (基本上移动开发的主要数据传输都是JSON) 1.1.JSON特点: a.[] 表示数组 b.{} 表示字典 - 对象模型建立关系 c.应用非常多,基本上移动开发的主要数据传输都是JSO ...

  4. TCP系列05—连接管理—4、TCP连接的ISN、连接建立超时及TCP的长短连接

    一.TCP连接的ISN         之前我们说过初始建立TCP连接的时候的系列号(ISN)是随机选择的,那么这个系列号为什么不采用一个固定的值呢?主要有两方面的原因 防止同一个连接的不同实例(di ...

  5. C#创建Window服务图解,安装、配置、以及C#操作Windows服务

    一.首先打开VS2013,创建Windows服务项目 二.创建完成后对"Service1.cs"重命名位"ServiceDemo":然后切换到代码视图,写个服务 ...

  6. C# 创建Excel或需不安装Office

    第一种.Aspose.Cells.dll //如果需要饶过office Excel那么就看我最后的实现方法吧~! //我最后的实现是使用的第三方Aspose.Cells.dll //具了解这个dll一 ...

  7. HDU 2114 Calculate S(n)

    http://acm.hdu.edu.cn/showproblem.php?pid=2114 Problem Description Calculate S(n). S(n)=13+23 +33 +. ...

  8. phpcms退出 提示 :退出成功0 。 的解决办法

    打开/phpcms/modules/member/index.php 搜索如下代码: showmessage(L('logout_success').$synlogoutstr, $forward); ...

  9. 如何取得dbgrid中未保存(post)的值(50分)

    比如说处在编辑状态时,想取得当前记录值 Dataset.fields[0].Value 就是当前值:Dataset.fields[0].OldValue 就是原始值. 呵呵,我指得是在编辑时,就是按键 ...

  10. CCS3 动画-鼠标放上去放大背景图片

    ---〉 效果如上,一个简单的过渡放大效果, <!DOCTYPE HTML> <html> <body> <style> #test{ width:30 ...