Stack vs Heap
http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html
Table of Contents
Stack vs Heap
So far we have seen how to declare basic type variables such as int, double, etc, and complex types such as arrays and structs. The way we have been declaring them so far, with a syntax that is like other languages such as MATLAB, Python, etc, puts these variables on the stack in C.
The Stack
What is the stack? It's a special region of your computer's memory that stores temporary variables created by each function (including the main() function). The stack is a "FILO" (first in, last out) data structure, that is managed and optimized by the CPU quite closely. Every time a function declares a new variable, it is "pushed" onto the stack. Then every time a function exits, all of the variables pushed onto the stack by that function, are freed (that is to say, they are deleted). Once a stack variable is freed, that region of memory becomes available for other stack variables.
The advantage of using the stack to store variables, is that memory is managed for you. You don't have to allocate memory by hand, or free it once you don't need it any more. What's more, because the CPU organizes stack memory so efficiently, reading from and writing to stack variables is very fast.
A key to understanding the stack is the notion that when a function exits, all of its variables are popped off of the stack (and hence lost forever). Thus stack variables arelocal in nature. This is related to a concept we saw earlier known as variable scope, or local vs global variables. A common bug in C programming is attempting to access a variable that was created on the stack inside some function, from a place in your program outside of that function (i.e. after that function has exited).
Another feature of the stack to keep in mind, is that there is a limit (varies with OS) on the size of variables that can be store on the stack. This is not the case for variables allocated on the heap.
To summarize the stack:
- the stack grows and shrinks as functions push and pop local variables
- there is no need to manage the memory yourself, variables are allocated and freed automatically
- the stack has size limits
- stack variables only exist while the function that created them, is running
The Heap
The heap is a region of your computer's memory that is not managed automatically for you, and is not as tightly managed by the CPU. It is a more free-floating region of memory (and is larger). To allocate memory on the heap, you must use malloc() or calloc(), which are built-in C functions. Once you have allocated memory on the heap, you are responsible for using free() to deallocate that memory once you don't need it any more. If you fail to do this, your program will have what is known as a memory leak. That is, memory on the heap will still be set aside (and won't be available to other processes). As we will see in the debugging section, there is a tool called valgrind that can help you detect memory leaks.
Unlike the stack, the heap does not have size restrictions on variable size (apart from the obvious physical limitations of your computer). Heap memory is slightly slower to be read from and written to, because one has to use pointers to access memory on the heap. We will talk about pointers shortly.
Unlike the stack, variables created on the heap are accessible by any function, anywhere in your program. Heap variables are essentially global in scope.
Stack vs Heap Pros and Cons
Stack
- very fast access
- don't have to explicitly de-allocate variables
- space is managed efficiently by CPU, memory will not become fragmented
- local variables only
- limit on stack size (OS-dependent)
- variables cannot be resized
Heap
- variables can be accessed globally
- no limit on memory size
- (relatively) slower access
- no guaranteed efficient use of space, memory may become fragmented over time as blocks of memory are allocated, then freed
- you must manage memory (you're in charge of allocating and freeing variables)
- variables can be resized using
realloc()
Examples
Here is a short program that creates its variables on the stack. It looks like the other programs we have seen so far.
#include <stdio.h>
double multiplyByTwo (double input) {
double twice = input * 2.0;
return twice;
}
int main (int argc, char *argv[])
{
int age = 30;
double salary = 12345.67;
double myList[3] = {1.2, 2.3, 3.4};
printf("double your salary is %.3f\n", multiplyByTwo(salary));
return 0;
}
double your salary is 24691.340
On lines 10, 11 and 12 we declare variables: an int, a double, and an array of three doubles. These three variables are pushed onto the stack as soon as the main() function allocates them. When the main() function exits (and the program stops) these variables are popped off of the stack. Similarly, in the function multiplyByTwo(), the twicevariable, which is a double, is pushed onto the stack as soon as the multiplyByTwo() function allocates it. As soon as the multiplyByTwo() function exits, the twice variable is popped off of the stack, and is gone forever.
As a side note, there is a way to tell C to keep a stack variable around, even after its creator function exits, and that is to use the static keyword when declaring the variable. A variable declared with the static keyword thus becomes something like a global variable, but one that is only visible inside the function that created it. It's a strange construction, one that you probably won't need except under very specific circumstances.
Here is another version of this program that allocates all of its variables on the heap instead of the stack:
#include <stdio.h>
#include <stdlib.h> double *multiplyByTwo (double *input) {
double *twice = malloc(sizeof(double));
*twice = *input * 2.0;
return twice;
} int main (int argc, char *argv[])
{
int *age = malloc(sizeof(int));
*age = 30;
double *salary = malloc(sizeof(double));
*salary = 12345.67;
double *myList = malloc(3 * sizeof(double));
myList[0] = 1.2;
myList[1] = 2.3;
myList[2] = 3.4; double *twiceSalary = multiplyByTwo(salary); printf("double your salary is %.3f\n", *twiceSalary); free(age);
free(salary);
free(myList);
free(twiceSalary); return 0;
}
As you can see, using malloc() to allocate memory on the heap and then using free() to deallocate it, is no big deal, but is a bit cumbersome. The other thing to notice is that there are a bunch of star symbols * all over the place now. What are those? The answer is, they are pointers. The malloc() (and calloc() and free()) functions deal withpointers not actual values. We will talk more about pointers shortly. The bottom line though: pointers are a special data type in C that store addresses in memory instead of storing actual values. Thus on line 5 above, the twice variable is not a double, but is a pointer to a double. It's an address in memory where the double is stored.
When to use the Heap?
When should you use the heap, and when should you use the stack? If you need to allocate a large block of memory (e.g. a large array, or a big struct), and you need to keep that variable around a long time (like a global), then you should allocate it on the heap. If you are dealing with realtively small variables that only need to persist as long as the function using them is alive, then you should use the stack, it's easier and faster. If you need variables like arrays and structs that can change size dynamically (e.g. arrays that can grow or shrink as needed) then you will likely need to allocate them on the heap, and use dynamic memory allocation functions like malloc(), calloc(), realloc() andfree() to manage that memory "by hand". We will talk about dynamically allocated data structures after we talk about pointers.
Stack vs Heap的更多相关文章
- 【转】JVM运行原理及JVM中的Stack和Heap的实现过程
来自: http://blog.csdn.net//u011067360/article/details/46047521 Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’( ...
- 图解.NET Stack和Heap的本质区别
现在越来越觉得对.NET基本概念的理解和掌握对于提升编程水平的重要性,先从.NET的 Stack(栈)和Heap(堆)说起,计算机的内存可以分为代码块内存,stack内存和heap内存.代码块内存是在 ...
- 堆栈 & Stack and Heap
What's the difference between a stack and a heap? The differences between the stack and the heap can ...
- JVM的stack和heap,JVM内存模型,垃圾回收策略,分代收集,增量收集
(转自:http://my.oschina.net/u/436879/blog/85478) 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认 ...
- JVM运行原理及Stack和Heap的实现过程
Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’(.class文件,也就是0,1二进制程序),然后在OS之上的Java解释器中解释执行,而JVM是java的核心和基础,在ja ...
- Java虚拟机:JVM中的Stack和Heap
简单的了解一下JVM中的栈和堆 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和 ...
- 深入Java虚拟机:JVM中的Stack和Heap
在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...
- Mastering stack and heap for system reliability
http://www.iar.com/Global/Resources/Developers_Toolbox/Building_and_debugging/Mastering_stack_and_he ...
- 复习Java虚拟机:JVM中的Stack和Heap
在JVM中,内存分为两个部分,Stack(栈)和Heap(堆).这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...
随机推荐
- Vue生命周期钩子详解【个人解读】
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 转帖 利用伪元素和css3实现鼠标移入下划线向两边展开效果
原帖地址 https://www.cnblogs.com/yangjunfei/p/6739683.html 感谢分享 一.思路: 将伪元素:before和:after定位到元素底部中间,设置宽度 ...
- python+selenium打开浏览器报错问题
报关键字,升级selenium版本 若打开IE浏览器,停在IE界面,无法跳转对应的地址,设置一下IE的页面缩放,设置为100%
- UnxUtils让windows下的dos命令变为linux下的命令
一.UnxUtils UnxUtils是一个可以支持在Windows下使用linux命令的工具,用习惯了linux之后,感觉Windows的dos命令实在是太难用了,发现了这个工具,非常的小,装了它之 ...
- 【lua】LWT HttpdModule
要使用httpd模块,需要在脚本开头添加: require "httpd" httpd.pairs(apr_table) 用以遍历apr_table for key, value ...
- 【CSS】 布局之剖析负边距
我们都知道,一个元素框的大小是由元素内容+内边距+边框+外边距来决定的. 关于内边距padding,内边距呈现了元素的背景,其设置值是不可以为负的. 而对于外边距margin,默认为透明,设置值可以为 ...
- SQL Cookbook—数字、日期
1.计算不包含最大值和最小值的均值2.把字母数字串转换为数值3.更改累计和中的值–显示存款或取款后的值4.加减日.月.年5.计算两个日期之间的天数6.确定两个日期之间的工作日数目表EMP中,计算BLA ...
- Xshell关闭导致jar服务终止,使Jar在CentOS后台运行
环境:Xsehll6,CentOS7 在项目文件夹新建一个runjar.sh 在sh中写入(举例说明) nohup java -Dfile.encoding=UTF- -jar fin-mgmt-.j ...
- Selenium库简介
Selenium是一个自动化测试工具,利用它可以驱动浏览器执行特定的动作,如点击.下拉等操作,同时还可以获取浏览器当前呈现的页面的源代码,做到可见即可爬.对于一些JavaScript动态渲染的页面来说 ...
- java 如何下载jar包
随着maven工具的使用,我们已经不再需要辛苦的找jar包,也不需要再买会员去下载jar包,但是还有一些同学,不知道怎么下载jar包,下面我给大家介绍一下,如何潇洒的找到自己想要的jar包. 首先,访 ...