Stack vs Heap
http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html
Table of Contents
Stack vs Heap
So far we have seen how to declare basic type variables such as int, double, etc, and complex types such as arrays and structs. The way we have been declaring them so far, with a syntax that is like other languages such as MATLAB, Python, etc, puts these variables on the stack in C.
The Stack
What is the stack? It's a special region of your computer's memory that stores temporary variables created by each function (including the main() function). The stack is a "FILO" (first in, last out) data structure, that is managed and optimized by the CPU quite closely. Every time a function declares a new variable, it is "pushed" onto the stack. Then every time a function exits, all of the variables pushed onto the stack by that function, are freed (that is to say, they are deleted). Once a stack variable is freed, that region of memory becomes available for other stack variables.
The advantage of using the stack to store variables, is that memory is managed for you. You don't have to allocate memory by hand, or free it once you don't need it any more. What's more, because the CPU organizes stack memory so efficiently, reading from and writing to stack variables is very fast.
A key to understanding the stack is the notion that when a function exits, all of its variables are popped off of the stack (and hence lost forever). Thus stack variables arelocal in nature. This is related to a concept we saw earlier known as variable scope, or local vs global variables. A common bug in C programming is attempting to access a variable that was created on the stack inside some function, from a place in your program outside of that function (i.e. after that function has exited).
Another feature of the stack to keep in mind, is that there is a limit (varies with OS) on the size of variables that can be store on the stack. This is not the case for variables allocated on the heap.
To summarize the stack:
- the stack grows and shrinks as functions push and pop local variables
- there is no need to manage the memory yourself, variables are allocated and freed automatically
- the stack has size limits
- stack variables only exist while the function that created them, is running
The Heap
The heap is a region of your computer's memory that is not managed automatically for you, and is not as tightly managed by the CPU. It is a more free-floating region of memory (and is larger). To allocate memory on the heap, you must use malloc() or calloc(), which are built-in C functions. Once you have allocated memory on the heap, you are responsible for using free() to deallocate that memory once you don't need it any more. If you fail to do this, your program will have what is known as a memory leak. That is, memory on the heap will still be set aside (and won't be available to other processes). As we will see in the debugging section, there is a tool called valgrind that can help you detect memory leaks.
Unlike the stack, the heap does not have size restrictions on variable size (apart from the obvious physical limitations of your computer). Heap memory is slightly slower to be read from and written to, because one has to use pointers to access memory on the heap. We will talk about pointers shortly.
Unlike the stack, variables created on the heap are accessible by any function, anywhere in your program. Heap variables are essentially global in scope.
Stack vs Heap Pros and Cons
Stack
- very fast access
- don't have to explicitly de-allocate variables
- space is managed efficiently by CPU, memory will not become fragmented
- local variables only
- limit on stack size (OS-dependent)
- variables cannot be resized
Heap
- variables can be accessed globally
- no limit on memory size
- (relatively) slower access
- no guaranteed efficient use of space, memory may become fragmented over time as blocks of memory are allocated, then freed
- you must manage memory (you're in charge of allocating and freeing variables)
- variables can be resized using
realloc()
Examples
Here is a short program that creates its variables on the stack. It looks like the other programs we have seen so far.
#include <stdio.h>
double multiplyByTwo (double input) {
double twice = input * 2.0;
return twice;
}
int main (int argc, char *argv[])
{
int age = 30;
double salary = 12345.67;
double myList[3] = {1.2, 2.3, 3.4};
printf("double your salary is %.3f\n", multiplyByTwo(salary));
return 0;
}
double your salary is 24691.340
On lines 10, 11 and 12 we declare variables: an int, a double, and an array of three doubles. These three variables are pushed onto the stack as soon as the main() function allocates them. When the main() function exits (and the program stops) these variables are popped off of the stack. Similarly, in the function multiplyByTwo(), the twicevariable, which is a double, is pushed onto the stack as soon as the multiplyByTwo() function allocates it. As soon as the multiplyByTwo() function exits, the twice variable is popped off of the stack, and is gone forever.
As a side note, there is a way to tell C to keep a stack variable around, even after its creator function exits, and that is to use the static keyword when declaring the variable. A variable declared with the static keyword thus becomes something like a global variable, but one that is only visible inside the function that created it. It's a strange construction, one that you probably won't need except under very specific circumstances.
Here is another version of this program that allocates all of its variables on the heap instead of the stack:
#include <stdio.h>
#include <stdlib.h> double *multiplyByTwo (double *input) {
double *twice = malloc(sizeof(double));
*twice = *input * 2.0;
return twice;
} int main (int argc, char *argv[])
{
int *age = malloc(sizeof(int));
*age = 30;
double *salary = malloc(sizeof(double));
*salary = 12345.67;
double *myList = malloc(3 * sizeof(double));
myList[0] = 1.2;
myList[1] = 2.3;
myList[2] = 3.4; double *twiceSalary = multiplyByTwo(salary); printf("double your salary is %.3f\n", *twiceSalary); free(age);
free(salary);
free(myList);
free(twiceSalary); return 0;
}
As you can see, using malloc() to allocate memory on the heap and then using free() to deallocate it, is no big deal, but is a bit cumbersome. The other thing to notice is that there are a bunch of star symbols * all over the place now. What are those? The answer is, they are pointers. The malloc() (and calloc() and free()) functions deal withpointers not actual values. We will talk more about pointers shortly. The bottom line though: pointers are a special data type in C that store addresses in memory instead of storing actual values. Thus on line 5 above, the twice variable is not a double, but is a pointer to a double. It's an address in memory where the double is stored.
When to use the Heap?
When should you use the heap, and when should you use the stack? If you need to allocate a large block of memory (e.g. a large array, or a big struct), and you need to keep that variable around a long time (like a global), then you should allocate it on the heap. If you are dealing with realtively small variables that only need to persist as long as the function using them is alive, then you should use the stack, it's easier and faster. If you need variables like arrays and structs that can change size dynamically (e.g. arrays that can grow or shrink as needed) then you will likely need to allocate them on the heap, and use dynamic memory allocation functions like malloc(), calloc(), realloc() andfree() to manage that memory "by hand". We will talk about dynamically allocated data structures after we talk about pointers.
Stack vs Heap的更多相关文章
- 【转】JVM运行原理及JVM中的Stack和Heap的实现过程
来自: http://blog.csdn.net//u011067360/article/details/46047521 Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’( ...
- 图解.NET Stack和Heap的本质区别
现在越来越觉得对.NET基本概念的理解和掌握对于提升编程水平的重要性,先从.NET的 Stack(栈)和Heap(堆)说起,计算机的内存可以分为代码块内存,stack内存和heap内存.代码块内存是在 ...
- 堆栈 & Stack and Heap
What's the difference between a stack and a heap? The differences between the stack and the heap can ...
- JVM的stack和heap,JVM内存模型,垃圾回收策略,分代收集,增量收集
(转自:http://my.oschina.net/u/436879/blog/85478) 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认 ...
- JVM运行原理及Stack和Heap的实现过程
Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’(.class文件,也就是0,1二进制程序),然后在OS之上的Java解释器中解释执行,而JVM是java的核心和基础,在ja ...
- Java虚拟机:JVM中的Stack和Heap
简单的了解一下JVM中的栈和堆 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和 ...
- 深入Java虚拟机:JVM中的Stack和Heap
在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...
- Mastering stack and heap for system reliability
http://www.iar.com/Global/Resources/Developers_Toolbox/Building_and_debugging/Mastering_stack_and_he ...
- 复习Java虚拟机:JVM中的Stack和Heap
在JVM中,内存分为两个部分,Stack(栈)和Heap(堆).这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...
随机推荐
- centos安装postgresql-rpm
rpm -ivh pgdg-centos93-9.3-3.noarch.rpm确认,回车,
- PHP面向对象的基本原则
对象内部是高内聚的 ——对象只负责一项特定的功能(职能可大可小) ——所有对象相关的内容都封装到对象内部 高内聚就是该有的都有,用的时候不会缺胳膊少腿! 对象对外是低耦合的 ——外部世界可以看到对象的 ...
- gemspec和Gemfile的不同角色作用
[原文] http://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/ 我的翻译 http ...
- sql developer链接不上oracle 报 The Network Adapter could not establish the connection
安装时候报 : Oracle 支持在具有 DHCP 分配的公共 IP 地址的系统上进行安装.但应使用静态 IP 地址来配置系统的主网络接口, 以便 Oracle 软件正常工作.有关在配置有 DHCP ...
- Java ArrayList trimToSize()
前几天看了Java ArrayList,没有明白trimToSize()这个方法是什么意思,所以看了一下源码并且debug一下自己的一个例子,明白了其中的含义.贴在这里. ArrayList al = ...
- 深入redis内部---网络编程
Redis在anet.h和anet.c中封装了底层套接字实现: 1.anetTcpServer,建立网络套接字服务器,完成对socket(),bind(),listen()等操作的封装,返回socke ...
- Java入门系列-24-实现网络通信
互联网上那么多设备,java 是如何与其他设备通信的呢?这次的内容是网络通信的基础,有了它咱们才能上网页.玩游戏.视频聊天. Socket 客户端套接字 Socket 客户端套接字,用于连接互联网提供 ...
- canvas绘制经典星空连线效果
来自:https://segmentfault.com/a/1190000009675230 下面开始coding:先写个canvas标签 <canvas height="620&qu ...
- Eigen库矩阵运算使用方法
Eigen库矩阵运算使用方法 Eigen这个类库,存的东西好多的,来看一下主要的几个头文件吧: ——Core 有关矩阵和数组的类,有基本的线性代数(包含 三角形 和 自伴乘积 相关),还有相应对数组的 ...
- c#单例(Singleton)模式实现
sealed class Singleton { private Singleton(); public static readonly Singleton Instance=new Singleto ...