JZYZOJ1355 [usaco2007]奶牛赛跑 矩阵乘法 离散化
http://172.20.6.3/Problem_Show.asp?id=1355
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=;
int n,m,s,t,siz;
struct nod{int x,y,v;}aa[maxn];
struct mat{
int e[maxn][maxn];
mat(){memset(e,,sizeof(e));}
};mat a;
int bb[maxn]={};
mat mul(mat x,mat y){
mat z;
for(int i=;i<=siz;i++){
for(int j=;j<=siz;j++){
for(int k=;k<=siz;k++){
z.e[i][j]=min(z.e[i][j],x.e[i][k]+y.e[k][j]);
}
}
}return z;
}
mat pow(mat x,int k){
mat z;
for(int i=;i<=siz;i++){
z.e[i][i]=;
}
while(k){
if(k&)z=mul(z,x);
x=mul(x,x);
k/=;
}
return z;
}
int main(){
scanf("%d%d%d%d",&n,&m,&s,&t);
for(int i=;i<=m;i++){
scanf("%d%d%d",&aa[i].v,&aa[i].x,&aa[i].y);
bb[*i-]=aa[i].x;bb[*i]=aa[i].y;
}sort(bb+,bb++m*);
siz=unique(bb+,bb++m*)-bb-;
s=lower_bound(bb+,bb++siz,s)-bb;
t=lower_bound(bb+,bb++siz,t)-bb;
for(int i=;i<=m;i++){
aa[i].x=lower_bound(bb+,bb++siz,aa[i].x)-bb;
aa[i].y=lower_bound(bb+,bb++siz,aa[i].y)-bb;
a.e[aa[i].x][aa[i].y]=aa[i].v;
a.e[aa[i].y][aa[i].x]=aa[i].v;
}
mat z=pow(a,n);
printf("%d\n",z.e[s][t]);
return ;
}
JZYZOJ1355 [usaco2007]奶牛赛跑 矩阵乘法 离散化的更多相关文章
- 【BZOJ1706】[usaco2007 Nov]relays 奶牛接力跑 矩阵乘法
[BZOJ1706][usaco2007 Nov]relays 奶牛接力跑 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项 ...
- BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法
BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法 Description 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛 ...
- BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德
BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们 ...
- 【Floyd矩阵乘法】BZOJ1706- [usaco2007 Nov]relays 奶牛接力跑
[题目大意] 给出一张无向图,求出恰巧经过n条边的最短路. [思路] 首先题目中只有100条边,却给出了10000个点(实际上最多只能有200个),离散化一下. 后面就是Floyd的新姿势,以前看过的 ...
- 【bzoj1712】[Usaco2007 China]Summing Sums 加密 矩阵乘法
题目描述 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛的加密方法.由于她们并不是经验十足,她们的加密方法非常简单:第i只奶牛掌握着密码的第i个数字,起始的时候是Ci(0≤C ...
- 【POJ3613】Cow Relays 离散化+倍增+矩阵乘法
题目大意:给定一个 N 个顶点,M 条边的无向图,求从起点到终点恰好经过 K 个点的最短路. 题解:设 \(d[1][i][j]\) 表示恰好经过一条边 i,j 两点的最短路,那么有 \(d[r+m] ...
- 倍增&矩阵乘法 专题复习
倍增&矩阵乘法 专题复习 PreWords 这两个基础算法我就不多说啦,但是还是要介绍一下" 广义矩阵 "乘法 其实就是把矩阵换成取\(max\),然后都一样... 据神仙 ...
- *HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
- 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】
目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...
随机推荐
- 【BZOJ】1703: [Usaco2007 Mar]Ranking the Cows 奶牛排名
[题意]给定n头牛和m对大小关系,求最坏情况下至少还需要比较几对奶牛的大小(在未确定顺序的奶牛对中随机比较) [算法]floyd求传递闭包 [题解]可达说明大小已知,则不可达点对数量就是最少比较次数. ...
- Spring4+SpringMVC+MyBatis整合思路(山东数漫江湖)
1.Spring框架的搭建 这个很简单,只需要web容器中注册org.springframework.web.context.ContextLoaderListener,并指定spring加载配置文件 ...
- VS推荐插件
以下插件均可在NuGet下载 Smooth Scroll 平滑滚动 Format document on Save 保存时自动格式化代码 Supercharger VS增强插件[破解教程] HideM ...
- [bzoj1070] 修车
这周学习了费用流,就写了几题.其中有一题就是bzoj上的修车,看起来很丧,交了6次都是除了样例全wa(事实证明样例说明不了什么,还会误导你……). 题目大意:有m个技术人员n辆车,一个技术人员只能同时 ...
- perl6中的替换
use v6; =begin pod perl6 中的替换用S/// S有几个可选参数: :g —(长形式::global)全局匹配:替换掉所有的出现 :i —不区分大小写的匹配 :ii —(长形式: ...
- ew做socks5代理
这个工具和之前讲过的xxoo类似.链接:https://www.cnblogs.com/nul1/p/8883271.html https://zhuanlan.zhihu.com/p/3282215 ...
- 【Windows使用笔记】Windows日常使用软件
整理一些对于我来说日常使用的Windows软件. 排名不分先后,仅凭我想起来的顺序! 1 MadAppLauncher 这个对我来说非常需要了. 使用它可以快速启动日常常用的软件,非常快捷高效.一般来 ...
- devm_xxx机制
前言 devm是内核提供的基础机制,用于方便驱动开发者所分配资源的自动回收.参考内核文档devres.txt.总的来说,就是驱动开发者只需要调用这类接口分配期望的资源,不用关心释放问题.这些资源的释放 ...
- Yii 1.1.17 六、开启路由与使用缓存
一.开启路由 1.在配置文件main.php的components中 定义如下: // 定义路由 'urlManager'=>array( // URL模式为PATHINFO 'urlForma ...
- python基础===Number
本文转自:python之Number 1.Python number数字 Python Number 数据类型用于存储数值. 数据类型是不允许改变的,这就意味着如果改变 Number 数据类型的值,将 ...