http://acm.hdu.edu.cn/showproblem.php?pid=4609

题意:给你n个数,问任意取三边能够,构成三角形的概率为多少。

思路:使用FFT对所有长度的个数进行卷积(\(C = \{x + y| x \in A, y \in B \} \)),得到所有两边和情况数,再考虑去掉重复的情况。找边并计数的时候再去掉不可能的情况。具体操作看bin神的博客   

另FFT还可以用来进行多项式和高精度乘法,又难懂又难用的东西=x=

/** @Date    : 2016-12-04-16.31
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/ #include<bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const double PI = acos(-1.0); struct Complex
{
double a, i;//实部,虚部
Complex(double aa = 0, double ii = 0)
{
a = aa, i = ii;
}
Complex operator +(const Complex &y)
{
return Complex(a + y.a, i + y.i);
}
Complex operator -(const Complex &y)
{
return Complex(a - y.a, i - y.i);
}
Complex operator *(const Complex &y)
{
return Complex(a * y.a - i * y.i, a * y.i + i * y.a);
}
}; void change(Complex y[], int len)//len 必须为2的幂;位置i和二进制反转的位置互换
{
int i, j, k;
for(i = 1, j = len / 2; i < len - 1; i++)
{
if(i < j)
swap(y[i], y[j]);
//交换互为小标反转的元素,i<j交换一次
//i正常++ j左反转类型的+1 始终保持二者反转
k = len / 2;
while(j >= k)
{
j -= k;
k /= 2;
}
if(j < k)
j += k;
}
} void fft(Complex y[], int len, int on)//on==1时DFT -1时IDFT len必须为2的幂
{
change(y, len);
for(int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
for(int j = 0; j < len; j+=h)
{
Complex w(1, 0);
for(int k = j; k < j + h / 2; k++)
{
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if(on == -1)
for(int i = 0; i < len; i++)
y[i].a /= len;
} Complex x1[4 * N];
int a[N];
LL num[4 * N];
LL sum[4 * N]; int main()
{
int T;
cin >> T;
while(T--)
{
int n;
scanf("%d", &n);
MMF(num);
for(int i = 0; i < n; i++)
{
scanf("%d", a + i);
num[a[i]]++; }
sort(a, a + n);
////
int len1 = a[n - 1] + 1;
int len = 1;
while(len < 2 * len1)
len <<= 1;
for(int i = 0; i < len1; i++)
x1[i] = Complex(num[i], 0);
for(int i = len1; i < len; i++)
x1[i] = Complex(0 , 0);
//
fft(x1, len, 1);
for(int i = 0; i < len; i++)
x1[i] = x1[i] * x1[i];
fft(x1, len, -1);
//
for(int i = 0; i < len; i++)
num[i] = (LL)(x1[i].a + 0.5);
len = 2 * a[n - 1]; /////
for(int i = 0; i < n; i++)//卷积中同样的数字选取两次
num[a[i] + a[i]]--;
for(int i = 1; i <= len; i++)//卷积中数字选取无顺序关系
num[i] /= 2;
sum[0] = 0;
for(int i = 1; i <= len; i++)//数字出现次数前缀和
{
sum[i] = sum[i - 1] + num[i];
}
LL cnt = 0;
for(int i = 0; i < n; i++)
{
cnt += sum[len] - sum[a[i]];
///
cnt -= (LL)(n - i - 1) * i;
cnt -= (LL)(n - 1) * 1;
cnt -= (LL)(n - i - 1) * (n - i - 2) / 2;
}
printf("%.7lf\n", (double)cnt * 6.0 / n / (n - 1.0) / (n - 2.0));
}
return 0;
}

HDU 4609 FFT模板的更多相关文章

  1. hdu 4609 FFT

    题意:给出一堆数,问从这些数中取3个能组成三角形的概率? sol:其实就是问从这些数里取3个组成三角形有多少种取法 脑洞大开的解法:用FFT 设一开始的数是1 3 3 4 作一个向量x,其中x[i]= ...

  2. HDU 1402 fft 模板题

    题目就是求一个大数的乘法 这里数字的位数有50000的长度,按平时的乘法方式计算,每一位相乘是要n^2的复杂度的,这肯定不行 我们可以将每一位分解后作为系数,如153 = 1*x^2 + 5*x^1 ...

  3. HDU 4609 FFT+组合数学

    3-idiots Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. HDU 4609 FFT+各种分类讨论

    思路: http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html 其实我是懒得写了.... 一定要define int long ...

  5. hdu 4609 3-idiots [fft 生成函数 计数]

    hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...

  6. fft模板 HDU 1402

    // fft模板 HDU 1402 #include <iostream> #include <cstdio> #include <cstdlib> #includ ...

  7. HDU 4609 3-idiots FFT+容斥

    一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完 ...

  8. HDU 1402 A * B Problem Plus (FFT模板题)

    FFT模板题,求A*B. 用次FFT模板需要注意的是,N应为2的幂次,不然二进制平摊反转置换会出现死循环. 取出结果值时注意精度,要加上eps才能A. #include <cstdio> ...

  9. HDU 4609 3-idiots ——(FFT)

    这是我接触的第一个关于FFT的题目,留个模板. 这题的题解见:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html. FFT的 ...

随机推荐

  1. apache访问403错误

    1.排查selinux 2.目录权限 3.WEB主目录是否正确

  2. Java学习个人备忘录之关键字final

    final关键字final可以修饰类,方法,变量.final修饰的类不可以被继承final修饰的方法不可以被覆盖final修饰的变量是一个常量.只能被赋值一次.内部类只能访问被final修饰的局部变量 ...

  3. (转)apktool+dex2jar+jd_gui

    转:http://www.cnblogs.com/MichaelGuan/archive/2011/10/25/2224578.html apktool: 可以解析资源文件,比如布局文件xml等,方便 ...

  4. 文件异步上传-ajaxFileUpload

    $.ajaxFileUpload是一个jquery插件 文章:jQuery插件之ajaxFileUpload

  5. iOS开发解决 jsonModel 属性跟系统的重复

    -(id)initWithDic:(NSDictionary *)dic { if (self = [super init]) { [self setValuesForKeysWithDictiona ...

  6. TCP源码—连接建立

    一.SYN报文处理: 公共部分:tcp_v4_rcv->tcp_v4_do_rcv->tcp_v4_cookie_check(无处理动作)->tcp_rcv_state_proces ...

  7. %pylab ipython 中文

    格式:%pylab [--no-import-all] [gui] 该命令会在ipython或notebook环境中自动加载numpy和matplotlib库,跟以下语句功能一致 import num ...

  8. docker使用记录

    1.安装(开始前要注意系统内核版本是否合适,建议用7以上的系统吧,少点坑) //安装docker yum -y install docker-io //启动 service docker start ...

  9. 一致性Hash算法(Consistent Hash)

    分布式算法 在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括: 轮循算法(Round Robin).哈希算法(HASH).最少连接算法(Least Connection).响应速度算法(Re ...

  10. [BZOJ2821]作诗

    description 在线询问区间内出现次数为正偶数的数的种数. data range \[n,m\le 10^5\] solution 分块大法好 首先离散化权值 这种对于权值做询问并且询问放在一 ...