【BZOJ1283】序列

Description

给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和最大。

Input

第1行三个数N,m,k。 接下来N行,每行一个字符串表示Ci。

Output

最大和。

Sample Input

10 5 3
4 4 4 6 6 6 6 6 4 4

Sample Output

30

HINT

20%的数据:n<=10。
100%的数据:N<=1000,k,m<=100。Ci<=20000。

题解:很难想的费用流建图,看了题解才略懂,下面说一下建图方法和我的理解:

1.S->1...i -> i+1...n->T 容量k,费用0
2.i -> i+m 容量1,费用ai

我的理解是:假如你只有k个流量,要体现出所有的权值,你该如何利用这k个流量?显然你必须重复利用这些流量,就以[l,l+m]和[l+1,l+m+1],l的流量对l+m+1没有影响,所以l+m+1可以直接将l的流量拿过来用,达到节约流量的目的。这样一来,这k个流量在经过每个区间时都会选择权值最大的路径去走,这样跑最大费用流就能得出正确的解。

1283

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
int n,m,k,S,T,cnt,ans;
int to[30000],next[30000],head[1010],cost[30000],flow[30000],dis[1010],inq[1010],pe[1010],pv[1010];
queue<int> q;
void add(int a,int b,int c,int d)
{
to[cnt]=b,cost[cnt]=c,flow[cnt]=d,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,cost[cnt]=-c,flow[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int bfs()
{
memset(dis,0x3f,sizeof(dis));
dis[S]=0,q.push(S);
int i,u;
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=head[u];i!=-1;i=next[i])
{
if(dis[to[i]]>dis[u]+cost[i]&&flow[i])
{
dis[to[i]]=dis[u]+cost[i],pe[to[i]]=i,pv[to[i]]=u;
if(!inq[to[i]]) inq[to[i]]=1,q.push(to[i]);
}
}
}
return dis[T]<0x3f3f3f3f;
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
int i,j,a;
S=0,T=n+1;
memset(head,-1,sizeof(head));
add(S,1,0,k);
for(i=1;i<=n;i++)
{
add(i,i+1,0,k);
scanf("%d",&a);
if(i+m<=n) add(i,i+m,-a,1);
else add(i,T,-a,1);
}
while(bfs())
{
int mf=1<<30;
for(i=T;i!=S;i=pv[i]) mf=min(mf,flow[pe[i]]);
ans-=dis[T]*mf;
for(i=T;i!=S;i=pv[i]) flow[pe[i]]-=mf,flow[pe[i]^1]+=mf;
}
printf("%d",ans);
return 0;
}

3550

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
int n,k,S,T,cnt,ans;
int to[30000],next[30000],head[1010],cost[30000],flow[30000],dis[1010],inq[1010],pe[1010],pv[1010];
queue<int> q;
void add(int a,int b,int c,int d)
{
to[cnt]=b,cost[cnt]=c,flow[cnt]=d,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,cost[cnt]=-c,flow[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int bfs()
{
memset(dis,0x3f,sizeof(dis));
dis[S]=0,q.push(S);
int i,u;
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=head[u];i!=-1;i=next[i])
{
if(dis[to[i]]>dis[u]+cost[i]&&flow[i])
{
dis[to[i]]=dis[u]+cost[i],pe[to[i]]=i,pv[to[i]]=u;
if(!inq[to[i]]) inq[to[i]]=1,q.push(to[i]);
}
}
}
return dis[T]<0x3f3f3f3f;
}
int main()
{
scanf("%d%d",&n,&k);
int i,j,a;
S=0,T=3*n+1;
memset(head,-1,sizeof(head));
add(S,1,0,k);
for(i=1;i<=3*n;i++)
{
add(i,i+1,0,k);
scanf("%d",&a);
if(i+n<=3*n) add(i,i+n,-a,1);
else add(i,T,-a,1);
}
while(bfs())
{
int mf=1<<30;
for(i=T;i!=S;i=pv[i]) mf=min(mf,flow[pe[i]]);
ans-=dis[T]*mf;
for(i=T;i!=S;i=pv[i]) flow[pe[i]]-=mf,flow[pe[i]^1]+=mf;
}
printf("%d",ans);
return 0;
}

【BZOJ1283/3550】序列/[ONTAK2010]Vacation 最大费用流的更多相关文章

  1. [bzoj4842][bzoj1283][Neerc2016]Delight for a Cat/序列_线性规划_费用流

    4842: [Neerc2016]Delight for a Cat_1283: 序列 题目大意:ls是一个特别堕落的小朋友,对于n个连续的小时,他将要么睡觉要么打隔膜,一个小时内他不能既睡觉也打隔膜 ...

  2. BZOJ1283 序列(费用流)

    不妨看做是先用k个指针指向被选择的前k个元素,然后每次将选中当前第一个元素的指针移到最后,并且需要满足位置变化量>=m.显然这样可以构造出所有的合法方案.那么可以以此建立费用流模型,以一条流量k ...

  3. 【bzoj1283】序列 线性规划与费用流

    题目描述 给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和最大. 输入 第1行三个数N,m,k. ...

  4. BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划

    BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得 ...

  5. [NOI2019]序列(模拟费用流)

    题意: 有两个长度为n的序列,要求从每个序列中选k个,并且满足至少有l个位置都被选,问总和最大是多少. \(1\leq l\leq k\leq n\leq 2*10^5\). 首先,记录当前考虑到的位 ...

  6. luogu P5470 [NOI2019]序列 dp 贪心 费用流 模拟费用流

    LINK:序列 考虑前20分 容易想到爆搜. 考虑dp 容易设\(f_{i,j,k,l}\)表示前i个位置 选了j对 且此时A选择了k个 B选择了l个的最大值.期望得分28. code //#incl ...

  7. P5470-[NOI2019]序列【模拟费用流】

    正题 题目链接:https://www.luogu.com.cn/problem/P5470 题目大意 两个长度为\(n\)的序列\(a,b\),求出它们两个长度为\(K\)的子序列,且这两个子序列至 ...

  8. BZOJ 3550: [ONTAK2010]Vacation [单纯形法]

    有3N个数,你需要选出一些数,首先保证任意长度为N的区间中选出的数的个数<=K个,其次要保证选出的数的个数最大. 好像都是费用流... 单纯性裸题呀... 注意每个数最多选1次 #include ...

  9. BZOJ 1283: 序列 (最大费用流)

    题意 有n个正整数,要选取里面的一些数,在保证每m个连续的数中最多选k个的情况下,使得得到的值最大. 分析 我们可以把问题先转化为选k次,每一次每m个数只能选一个.那么根据贪心的策略,每m个里一定会选 ...

随机推荐

  1. JS正则表达式(转载)

    在JavaScript中,RegExp对象表示正则表达式,用来对字符串进行匹配. 一.两种定义方法: 1.直接量法: /pattern/attribute 2.对象法: new RegExp(patt ...

  2. 纯CSS弹出层,城市切换效果

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  3. Lintcode---二叉树的层次遍历(原型)

    给出一棵二叉树,返回其节点值的层次遍历(逐层从左往右访问) 您在真实的面试中是否遇到过这个题? Yes 样例 给一棵二叉树 {3,9,20,#,#,15,7} : 3 / \ 9 20 / \ 15 ...

  4. 自己定义进度条PictureProgressBar——从开发到开源公布全过程

    自己定义进度条PictureProgressBar--从开发到开源公布全过程 出处: 炎之铠邮箱:yanzhikai_yjk@qq.com 本文原创.转载请注明本出处! 本项目JCenter地址:ht ...

  5. 如何启动mininet实例上的wireshark图形界面

    启动wireshark 要启动mininet实例上的wireshark的图形界面,其实关键点只有两个: 保证宿主机上安装了X11 使用ssh -Y mininet@192.168.56.102 登录进 ...

  6. springboot admin server常用配置

    Property name Description Default value spring.boot.admin.context-path The context-path prefixes the ...

  7. Python随手记

    类属性的本质是变量对象. os.path.abspath(path) 返回绝对路径,如果填入相对路径,默认会在前面加上当前目录,组合成绝对路径. >>> os.path.abspat ...

  8. [原创]OpenERP 7.0 打印PDF报表 中文 乱码问题的解决方案。

    网上的解决方案基本上以替换字体和安装上海先锋科技开发的软件包配置两种方案,替换字体的方案尝试了几次都么有成功,安装软件包的方案成功. 软件环境:Ubuntu Server 12.04 第一步:先到ht ...

  9. 兴奋、强类型版的PHP语言 - Hack

    Hack 是 Facebook 推出的一款新的编程语言. Hack 是由Facebook开发的,同时结合了动态类型语言(如C语言)和静态类型语言(如PHP语言)两种特点的一种编程语言.通常在使用静态类 ...

  10. spring 集成 redis -- pub/sub

    redis除了常用的当做缓存外,还可以当做简单的消息中间件,实现消息发布订阅 spring集成redis,可以使用spring-data-redis 首先引入相关maven依赖(此处我spring相关 ...