题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数。

  当时看到这题就想到了某道奶牛题(戳我)。这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走过T边权的方案数。。。所以可以看成奶牛题相当于这一题里的边权为1的情况。

首先边权为1就把奶牛题的floyd那段改成矩乘就可以了,那么接下来考虑边权不为1的情况,因为边权最多为9,我们就可以把每个点拆成9个点,x[1]~x[9]为x拆完的点,x[i]和x[i+1]连一条边权为1的边,然后x到y有一条边权为z的边,那么就把x的第z个点往y的第1个点连一条边,当然也可以把x[i]和x[i-1]连边然后把x的第一个点往y的第z个点连边,都是等价的,因为x跑到y第z个点再跑回y和x跑z个点再到y所走过的都是z个点。然后跑矩乘就可以辣。

代码如下:

type
map=array[..,..]of longint;
var
n,m,t,i,j,x:longint;
ch:char;
mapp,a:map; function pos(i,j:longint):longint;
begin
exit((j-)*m+i);
end; procedure merge(var x,y:map);
var
i,j,k:longint;
z:map;
begin
fillchar(z,sizeof(z),);
for i:= to n do
for j:= to n do
for k:= to n do
z[i,j]:=(z[i,j]+x[i,k]*y[k,j])mod ;
x:=z;
end; procedure qp(y:longint);
var
x:map;
begin
x:=mapp;
while y> do
begin
if y and = then merge(a,x);
merge(x,x);
y:=y>>;
end;
end; begin
readln(m,t);
n:=m*;
for i:= to m do
for j:= to do
mapp[pos(i,j),pos(i,j+)]:=;
for i:= to m do
begin
for j:= to m do
begin
read(ch);x:=ord(ch)-ord('');
if x= then continue;
mapp[pos(i,x),j]:=;
end;
readln;
end;
for i:= to n do
a[i,i]:=;
qp(t);
writeln(a[,m]);
end.

bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)的更多相关文章

  1. BZOJ1297 [SCOI2009]迷路 矩阵乘法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...

  2. 【bzoj1297】[SCOI2009]迷路 矩阵乘法

    题目描述 给出一个 $n$ 个点的有向图,每条边的权值都在 $[1,9]$ 之间.给出 $t$ ,求从 $1$ 到 $n$ ,经过路径边权和恰好为 $t$ 的方案数模2009. 输入 第一行包含两个整 ...

  3. [luogu4159 SCOI2009] 迷路(矩阵乘法)

    传送门 Solution 矩阵乘法新姿势qwq 我们知道当边权为1是我们可以利用矩阵快速幂来方便的求出路径数 那么对于边权很小的时候,我们可以将每个点都拆成若干个点 然后就将边权不为1转化为边权为1了 ...

  4. LUOGU P4159 [SCOI2009]迷路(矩阵乘法)

    传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...

  5. BZOJ1297: [SCOI2009]迷路 矩阵快速幂

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  6. [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1385  Solved: 993[Submit][Status] ...

  7. 【矩阵快速幂】bzoj1297 [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1407  Solved: 1007[Submit][Status ...

  8. [SCOI2009]迷路(矩阵快速幂) 题解

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  9. bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...

随机推荐

  1. SSH项目中的困惑之一

    1.request.getContextPath()详解 <%=request.getContextPath()%>是为了解决相对路径的问题,可返回站点的根路径. 但不用也可以,比如< ...

  2. 腾讯地图和百度地图的PHP相互转换

    /** * 百度地图---->腾讯地图 * @param double $lat 纬度 * @param double $lng 经度 * @return array(); */ functio ...

  3. kosaraju求强连通分量

    在了解kosaraju算法之前我们先了解一下什么是强连通分量,在有向图中如果两个定点vi,ui存在一条路劲从vi到达ui且也存在一条路劲从ui到达vi那么由ui和vi这两个点构成的图成为强连通图,简洁 ...

  4. 聊聊、dubbo 找不到 dubbo.xsd 报错

    平常在用 Dubbo 的时候,创建 xml 会提示 http://code.alibabatech.com/schema/dubbo/dubbo.xsd 找不到. 大家可以去 https://gith ...

  5. 3.配置HDFS HA

    安装zookeeper下载zookeeper编辑zookeeper配置文件创建myid文件启动zookeeper配置HDFS HA配置手动HA配置自动HA启动HDFS HA namenode负责管理整 ...

  6. Memory及其controller芯片整体测试方案(上篇)

    如果你最近想买手机,没准儿你一看价格会被吓到手机什么时候偷偷涨价啦! 其实对于手机涨价,手机制造商也是有苦难言,其中一个显著的原因是存储器芯片价格的上涨↗↗↗ >>> 存储器memo ...

  7. VUE中组件的使用

    关于vue组件引用 使用Nodejs的方法 被引用的组件要暴露 module.exports={}; 引用时 用 var abc= require("组件的路径") 然后 就可以用 ...

  8. 第八章 IO库

    8.1&&8.2 #include <iostream> #include <vector> #include <string> using nam ...

  9. 对编码内容多次UrlDecode

    对编码内容多次UrlDecode,并不会影响最终结果. 尝试阅读了微软的源代码,不过不容易读懂. 网址:https://referencesource.microsoft.com/#System/ne ...

  10. 从零讲JAVA ,给你一条 清晰地学习道路!该学什么就学什么!!

    1.计算机基础: 1.1数据机构基础: 主要学习:1.向量,链表,栈,队列和堆,词典.熟悉2.树,二叉搜索树.熟悉3.图,有向图,无向图,基本概念4.二叉搜索A,B,C类熟练,9大排序熟悉.5.树的前 ...