Drainage Ditches

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14721    Accepted Submission(s):
6968

Problem Description
Every time it rains on Farmer John's fields, a pond
forms over Bessie's favorite clover patch. This means that the clover is covered
by water for awhile and takes quite a long time to regrow. Thus, Farmer John has
built a set of drainage ditches so that Bessie's clover patch is never covered
in water. Instead, the water is drained to a nearby stream. Being an ace
engineer, Farmer John has also installed regulators at the beginning of each
ditch, so he can control at what rate water flows into that ditch.
Farmer
John knows not only how many gallons of water each ditch can transport per
minute but also the exact layout of the ditches, which feed out of the pond and
into each other and stream in a potentially complex network.
Given all this
information, determine the maximum rate at which water can be transported out of
the pond and into the stream. For any given ditch, water flows in only one
direction, but there might be a way that water can flow in a circle.
 
Input
The input includes several cases. For each case, the
first line contains two space-separated integers, N (0 <= N <= 200) and M
(2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is
the number of intersections points for those ditches. Intersection 1 is the
pond. Intersection point M is the stream. Each of the following N lines contains
three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the
intersections between which this ditch flows. Water will flow through this ditch
from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which
water will flow through the ditch.
 
Output
For each case, output a single integer, the maximum
rate at which water may emptied from the pond.
 
Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
 
Sample Output
50
 
Source
 
Recommend
lwg   |   We have carefully selected several similar
problems for you:  1533 3338 1569 3572 3416 
 
第一次学习写最大流问题,一道模板题,思路还是比较清晰的,不过算法效率不是很高,还需要学习更快的方法。
 
题意:就是由于下大雨的时候约翰的农场就会被雨水给淹没,无奈下约翰不得不修建水沟,而且是网络水沟,并且聪明的约翰还控制了水的流速,本题就是让你求出最大流速,无疑要运用到求最大流了。题中N为水沟数,M为水沟的顶点,接下来Si,Ei,Ci分别是水沟的起点,终点以及其容量。求源点1到终点M的最大流速。注意重边
 
附上代码:
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define INF 1e9
#define CL(a,b) memset(a,b,sizeof(a))
#define N 205 int n,m;
int mat[N][N];
int pre[N];
bool vis[N]; int xmin(int a,int b)
{
return a>b?b:a;
} bool BFS()
{
int cur;
queue<int> q;
CL(pre,);
CL(vis,false);
vis[]=true; ///true表示这个点已作为起点搜索过了
q.push();
while(!q.empty())
{
cur=q.front();
q.pop();
if(cur == n) return true; ///若搜到了终点,说明这是条增广路径,更新结果
for(int i=; i<=n; i++)
if(!vis[i] && mat[cur][i]) ///是否存在通过的路径
{
q.push(i);
pre[i]=cur;
vis[i]=true;
}
}
return false; ///若已经搜不到终点,则搜索结束
} int max_flow()
{
int ans=;
while()
{
if(!BFS()) return ans;
int Min = INF;
for(int i=n; i!=; i=pre[i])
Min=xmin(Min,mat[pre[i]][i]); ///找到最小的边,残留路径越小,则流量越大
for(int i=n; i!=; i=pre[i])
{
mat[pre[i]][i]-=Min; ///正向边
mat[i][pre[i]]+=Min; ///反向边
}
ans+=Min;
}
} int main()
{
int i,j;
while(~scanf("%d%d",&m,&n))
{
CL(mat,);
int a,b,c;
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
mat[a][b]+=c; ///考虑重边情况,若有两条同样的边,流量为它们的和
}
printf("%d\n",max_flow());
}
return ;
}

hdu 1532 Drainage Ditches(最大流模板题)的更多相关文章

  1. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  2. hdu 1532 Drainage Ditches(最大流)

                                                                                            Drainage Dit ...

  3. POJ 1273 || HDU 1532 Drainage Ditches (最大流模型)

    Drainage DitchesHal Burch Time Limit 1000 ms Memory Limit 65536 kb description Every time it rains o ...

  4. hdu 1532 Drainage Ditches (最大流)

    最大流的第一道题,刚开始学这玩意儿,感觉好难啊!哎····· 希望慢慢地能够理解一点吧! #include<stdio.h> #include<string.h> #inclu ...

  5. HDU 1532 Drainage Ditches(最大流 EK算法)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1532 思路: 网络流最大流的入门题,直接套模板即可~ 注意坑点是:有重边!!读数据的时候要用“+=”替 ...

  6. HDU 1532 Drainage Ditches 最大流 (Edmonds_Karp)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1532 感觉题意不清楚,不知道是不是个人英语水平问题.本来还以为需要维护入度和出度来找源点和汇点呢,看 ...

  7. poj 1273 && hdu 1532 Drainage Ditches (网络最大流)

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53640   Accepted: 2044 ...

  8. poj-1273 Drainage Ditches(最大流基础题)

    题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted ...

  9. HDU 1532 Drainage Ditches (网络流)

    A - Drainage Ditches Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

随机推荐

  1. leetcode 76 dp& 强连通分量&并查集经典操作

    800. Similar RGB Color class Solution { int getn(int k){ return (k+8)/17; } string strd(int k){ char ...

  2. 2018-8-10-win10-uwp-禁止编译器优化代码

    title author date CreateTime categories win10 uwp 禁止编译器优化代码 lindexi 2018-08-10 19:16:50 +0800 2018-2 ...

  3. Leetcode55. Jump Game跳跃游戏

    给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1,1,4] 输出: true ...

  4. Vue--vue中的组件、组件绑定事件和数据、私有组件、子组件,父子组件参数互传

    一.公有组件以及组件的使用和特点 <!DOCTYPE html> <html lang="en"> <head> <meta charse ...

  5. shell 向python传参数,空格引发的问题

    昨天用一个shell脚本,调用一个python脚本,并把shell脚本中用 time1=`date "+%Y-%m-%d %H:%M:%S"`生成的时间戳作为参数,传到python ...

  6. Leetcode922.Sort Array By Parity II按奇偶排序数组2

    给定一个非负整数数组 A, A 中一半整数是奇数,一半整数是偶数. 对数组进行排序,以便当 A[i] 为奇数时,i 也是奇数:当 A[i] 为偶数时, i 也是偶数. 你可以返回任何满足上述条件的数组 ...

  7. 常用的iOS 宏定义 (持续更新中)

    1.System Versioning Preprocessor Macros #define SYSTEM_VERSION_EQUAL_TO(v) ([[[UIDevice currentDevic ...

  8. Leetcode806.Number of Lines To Write String写字符串需要的行数

    我们要把给定的字符串 S 从左到右写到每一行上,每一行的最大宽度为100个单位,如果我们在写某个字母的时候会使这行超过了100 个单位,那么我们应该把这个字母写到下一行.我们给定了一个数组 width ...

  9. Hdu 1800 字符串hash

    题目链接 题意: 给出n(n<=3000)个字符串(长度<30,数字组成,肯能存在前导0), 问该序列最少可以分成多少个单调序列.可以转化成求相同字符串的个数的最大值 附上代码: /*** ...

  10. Oracle函数——MINUS

    解释 “minus”直接翻译为中文是“减”的意思,在Oracle中也是用来做减法操作的,只不过它不是传统意义上对数字的减法,而是对查询结果集的减法.A minus B就意味着将结果集A去除结果集B中所 ...