传送门

解题思路

  比较容易看的出来矩阵树定理。然后就怒送一Wa,这个矩阵树定理是不能直接用的。题目要求的其实是这个玩意。

\[ans=\sum\limits_{Tree}( \prod\limits_{e\in Tree}p_e*\prod\limits_{e\notin Tree}(1-p_e))
\]

而矩阵树能求的东西本质上其实是每棵生成树的积的和,说人话就是这个。

\[now=\sum\limits_{Tree}\prod\limits_{e\in Tree}w_e
\]

这个形式跟上面那个很像,但还是有点不一样。我们考虑将上面那个式子化简。根据

\[\prod\limits_{e\notin Tree}(1-p_e)=\frac{\prod\limits_e (1-p_e)}{\prod\limits_{e\in Tree}(1-p_e)}
\]

把这玩意往最上面那个式子里一带,神奇的事情发生了:

\[ans=\prod\limits_e(1-p_e)*\sum\limits_{Tree} \frac{\prod\limits_{e\in Tree}p_e}{\prod\limits_{e\in Tree}(1-p_e)}
\]

前面这个玩意可以直接算出来。后头这个玩意直接上矩阵树,把邻接矩阵的边权改成\(\frac{p_e}{1-p_e}\)就行了。

通过这道题,让我们明白了原来矩阵树里的那个边权是可以自己规定的,算出来的结果为每个生成树的积之和。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath> using namespace std;
const int MAXN = 55;
const double eps = 1e-8; int n;
double ans=1.0,base=1.0,f[MAXN][MAXN]; inline void Matrix_tree(){
double t;int p;
for(int i=1;i<n;i++){
p=i;
for(int j=i+1;j<n;j++)
if(fabs(f[p][i])<fabs(f[j][i])) p=j;
if(p!=i) swap(f[i],f[p]);
for(int j=i+1;j<n;j++){
t=f[j][i]/f[i][i];
for(int k=i;k<n;k++)
f[j][k]-=t*f[i][k];
}
ans*=f[i][i];
}
} int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
scanf("%lf",&f[i][j]);if(i==j) continue;
if(f[i][j]>1.0-eps) f[i][j]-=eps;
if(i>j && f[i][j]>eps) base*=(1-f[i][j]);
f[i][j]=f[i][j]/(1-f[i][j]);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)if(i!=j)
f[i][i]+=f[i][j],f[i][j]=-f[i][j];
Matrix_tree();printf("%.10lf",ans*base);
return 0;
}

BZOJ 3534: [Sdoi2014]重建(Matrix Tree)的更多相关文章

  1. bzoj 3534: [Sdoi2014]重建【矩阵树定理】

    啊啊啊无脑背过果然不可取 比如这道题就不会写 参考:https://blog.csdn.net/iamzky/article/details/41317333 #include<iostream ...

  2. [bzoj 3534][Sdoi2014] 重建

    传送门 Description  T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传 ...

  3. 【BZOJ 3534】 3534: [Sdoi2014]重建 (Matrix-Tree Theorem)

    3534: [Sdoi2014]重建 Time Limit: 10 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 709  Solved: 32 ...

  4. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  5. BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)

    题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...

  6. bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...

  7. 一篇自己都看不懂的Matrix tree总结

    Matrix tree定理用于连通图生成树计数,由于博主太菜看不懂定理证明,所以本篇博客不提供\(Matrix\ tree\)定理的证明内容(反正这个东西背结论就可以了是吧) 理解\(Matrix\ ...

  8. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  9. P3317 [SDOI2014]重建(Matrix-tree+期望)

    P3317 [SDOI2014]重建 详情看这位神犇的blog 剩下的注释在code里吧....... #include<iostream> #include<cstdio> ...

随机推荐

  1. Tmux 简单配置使用

    Tmux Prefix (prefix) Tmux 使用 Prefix 以将自身的快捷键与其它应用区分,运行 Tmux 快捷键时首先按下这个 Prefix (默认是 Ctrl-b 组合键),松手后紧接 ...

  2. SQL关于:警告: 聚合或其他 SET 操作消除了空值。

    方法一: create table tb ( id int, num int ) insert into tb select 1,10 insert into tb select 1,20 inser ...

  3. 画PCB时检查点总结

    一.画原理图时 NPN的引脚是否对应.继电器的引脚是否对应 设计通信电路时,MCU_RX和通信芯片RS232的ROUT接.同理MCU_TX和RS232的TIN接. MCU最好留个外接晶振接口,用NPN ...

  4. 管理员技术(五): 配置文档的访问权限、 配置附加权限、绑定到LDAP验证服务、配置LDAP家目录漫游

    一.配置文档的访问权限 问题: 本例要求将文件 /etc/fstab 拷贝为 /var/tmp/fstab,并调整文件 /var/tmp/fstab的权限,满足以下要求: 1>  此文件的拥有者 ...

  5. python内置模块-json和pickle

    安装第三方库     pip3 install requests     源码安装:下载源码,解压后切换到当前目录     执行python setup.py install   json和pickl ...

  6. 天照(amaterasu)

    天照(amaterasu) 有些时候,出题人真的不想写背景. 总而言之,天照现在有一个长度为 $ N $ 序列,她有 $ M $ 次询问,对于第 $ i $ 次询问 $ l_i,r_i,x_i $ 你 ...

  7. LInux多线程编程----线程属性pthread_attr_t

    1.每个POSIX线程有一个相连的属性对象来表示属性.线程属性对象的类型是pthread_attr_t,pthread_attr_t 在文件/usr/include/bits/pthreadtypes ...

  8. Java-Class-FC:java.time.Duration

    ylbtech-Java-Class-FC:java.time.Duration 1.返回顶部   2.返回顶部   3.返回顶部 1. /* * Copyright (c) 2012, 2015, ...

  9. (4)centos7 基础命令

    1.显示文件列表 ls 显示当前目录下所有非隐藏的文件夹名称 -a #显示路径下所有文件及目录 (包括以.开头的隐藏文件) -l #除文件名称外,亦将文件型态.权限.拥有者.文件大小等资讯详细列出(不 ...

  10. mysql的数据类型int、bigint、smallint 和 tinyint及id 类型变换

    bigint 从 -2^63 (-9223372036854775808) 到 2^63-1 (9223372036854775807) 的整型数据(所有数字).存储大小为 8 个字节. int 从 ...