之前题目看错了。。

先用双倍字符串处理后效性
首先要确定一个结论:如果原串s中相距为d的ch1和ch2只有一对,那么如果第一个翻开ch1,第二个翻开ch2,就能确定k
现在要求的是当我们第一次翻开的是ch1时,第二次翻哪个位置成功的概率最高
设这个概率为p,ans=sigma(cnti/n * pi),i∈['a','z']
那么我们枚举d,对每种字符找到这个最大的d即可

.

#include<bits/stdc++.h>
using namespace std;
int n,mp[][][];
char s[<<]; int main(){
cin>>s;
n=strlen(s);
for(int i=;i<n;i++)
s[i+n]=s[i];
for(int i=;i<n;i++)
for(int j=i+;j<i+n;j++)
mp[s[i]-'a'][s[j]-'a'][j-i+]++;
int sum=;
for(int i=;i<;i++){//对于每个字符找d
int Max=;
for(int d=;d<=n;d++){
int tmp=;
for(int j=;j<;j++)
if(mp[i][j][d]==)tmp++;
Max=max(Max,tmp);
}
sum+=Max;
}
printf("%.10lf\n",1.0*sum/n);
}

概率+后效性处理——cf930B好题的更多相关文章

  1. Codeforces - 24D 有后效性的DP处理

    题意:在n*m的网格中,某个物体初始置于点(x,y),每一步行动都会等概率地停留在原地/往左/往右/往下走,求走到最后一行的的步数的数学期望,其中n,m<1000 lyd告诉我们这种题目要倒推处 ...

  2. CF24D Broken robot 后效性DP

    这题咕了好久..... 设$f[i][j]$表示从$(i,j)$到最后一行的期望步数: 则有 $ f[i][1]=\frac{1}{3}(f[i][1]+f[i][2]+f[i+1][1])+1$ $ ...

  3. 0x55 环形与后效性问题

    poj2228 分第一天是否熟睡DP两次 #include<cstdio> #include<iostream> #include<cstring> #includ ...

  4. Cogs 376. [IOI2002]任务安排(后效性DP)

    [IOI2002]任务安排 ★☆ 输入文件:batch.in 输出文件:batch.out 简单对比 时间限制:1 s 内存限制:128 MB N个任务排成一个序列在一台机器上等待完成(顺序不得改变) ...

  5. luogu 4042 有后效性的dp

    存在有后效性的dp,但转移方程 f[i] = min( f[i], s[i] + sigma f[j] ( j 是后效点) ) 每次建当前点和 转移点的边 e1, 某点和其会影响的点 e2 spfa ...

  6. Educational Codeforces Round 62 E 局部dp + 定义状态取消后效性

    https://codeforces.com/contest/1140/problem/E 局部dp + 定义状态取消后效性 题意 给你一个某些位置可以改变的字符串,假如字符串存在回文子串,那么这个字 ...

  7. Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP

    有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...

  8. poj 2228 Naptime(DP的后效性处理)

    \(Naptime\) \(solution:\) 这道题不做多讲,它和很多区间DP的套路一致,但是这一道题它不允许断环成链,会超时.但是我们发现如果这只奶牛跨夜休息那么它在不跨夜的二十四个小时里一定 ...

  9. caioj 1084 动态规划入门(非常规DP8:任务安排)(取消后效性)

    这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加 ...

随机推荐

  1. 【HDOJ】P1007 Quoit Design (最近点对)

    题目意思很简单,意思就是求一个图上最近点对. 具体思想就是二分法,这里就不做介绍,相信大家都会明白的,在这里我说明一下如何进行拼合. 具体证明一下为什么只需要检查6个点 首先,假设当前左侧和右侧的最小 ...

  2. windows 修改远程登录端口号

    运行regedit.exe打开注册表编辑器,即在cmd的dos窗口输入regedit命令 找到如下注册表子项: HKEY_LOCAL_MACHINE\System\CurrentControlSet\ ...

  3. windows版nginx+ftp实现图片服务器的搭建

    配置图片服务器的一部分参数 resource.properties: #FTP\u76f8\u5173\u914d\u7f6e #FTP\u7684ip\u5730\u5740 FTP_ADDRESS ...

  4. C:\Windows\System32\drivers\etc中的hosts文件

    这个文件是根据TCP/IP for Windows 的标准来工作的,它的作用是包含IP地址和Host name(主机名)的映射关系,是一个映射IP地址和Host name(主机名)的规定,规定要求每段 ...

  5. Centos6.5 安装 LAMP

    Centos 安装 LAMP 系统: Centos 6.5 Apache 2.4 + PHP 7.2 + Mysql 5.7 准备工作 centos 查看版本 查看 centos版本 How to C ...

  6. nacos注册中心配置命名服务不生效问题

    nacos作为注册中心指定命名空间,配置如下: 但是启动之后发现服务都默认注册到了public这个命名空间下面,也就是指定的命名空间不生效 这是因为注册中心使用的命名空间的配置不是nacos.conf ...

  7. thinkphp模块设计

    3.2发布版本自带了一个应用目录结构,并且带了一个默认的应用入口文件,方便部署和测试,默认的应用目录是Application(实际部署过程中可以随意设置). 通常情况下3.2无需使用多应用模式,因为大 ...

  8. 0928CSP-S模拟测试赛后总结

    依旧跌落.昨天只是偶然诈尸.我依旧是那个第二机房垫底大垃圾. 赛时打的很放松.因为T1想到了正解.对拍也打了.尽管用了大约一半的考试时间. 但是对拍拍了很久没有出错.如果你在2019年9月28日晚一下 ...

  9. 回滚树形dp(按dfs序dp)——hdu6035

    本题前面的操作别的博客里都有.难点在于颜色ci的贡献,如何一次dfs求出答案 先来考虑如何在一次dfs中单独对颜色i进行计算 用遍历dfs序的方式,在深搜过程中,碰到带有颜色 i 的点 u,u每个颜色 ...

  10. [Nowcoder] 保护

    题意:... 思路: \(LCA\)乱搞+启发式合并(堆) #include <bits/stdc++.h> using namespace std; const int maxn = 2 ...