题目描述

输入

第一行有一个正整数T,表示测试数据的组数。

接下来的T行,每行输入两个十进制整数n和base。

输出

对于每组数据,输出一个十进制整数,表示在base进制下,n!结尾的零的个数。

样例输入

2

10 10

10 2

样例输出

2

8

数据范围

对于20%的数据,n<=20,base<=16

对于50%的数据,n<=10^9,base<=10^5

对于100%的数据,1<=T<=50,0<=n<=10^18,2<=base<=10^12

解法

题意转化为:令n!=basei∗k,则i为答案;

同时称i为base在n!中的贡献

直接想法是把base分解质因数为a1k1∗a2k2∗...∗amkm;

然后检查每个质因数ai在n!中的贡献 cnt,于是就可以得出这个质因数最多容纳cnt/ki个base。

把所有容纳能力取个最小值即为答案。


问题在于我们在求ai在n!中的贡献时,可能需要O(nlogn)的时间:

枚举j属于[1..n],易得ai在j中的贡献,累计所有贡献即为ai在n!中的贡献

如果采用上述办法,时间会超限。


给n一直除素数,并将每一次的商加起来,即为答案。

时间复杂度为O(logn);

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define sqr(x) ((x)*(x))
#define ln(x,y) int(log(x)/log(y))
using namespace std;
const char* fin="ex3566.in";
const char* fout="ex3566.out";
const int inf=0x7fffffff;
const int maxn=100007;
ll n,m,limit,tmp,tmd,tmb,ans;
ll t,i,j,k;
ll yue[maxn],cnt[maxn];
int main(){
scanf("%d",&t);
for (;t;t--){
scanf("%lld%lld",&n,&m);
limit=(ll)sqrt(m);
tmp=m;
yue[0]=0;
for (i=2;i<=limit;i++){
if (tmp==1) break ;
if (tmp%i==0){
yue[++yue[0]]=i;
cnt[yue[0]]=0;
while (tmp%i==0){
cnt[yue[0]]++;
tmp/=i;
}
}
}
if (tmp>1) yue[++yue[0]]=tmp,cnt[yue[0]]=1;
ans=0;
for (i=1;i<=yue[0];i++) {
//ll num=(n/yue[i]),fi=1,la=fi+num-1;
tmd=0;
/*for (j=yue[i];j<=n;j+=yue[i]) {
k=j;
while (k%yue[i]==0) k/=yue[i],tmd++;
}*/
k=n;
while (k) k/=yue[i],tmd+=k;
if (ans) ans=min(ans,tmd/cnt[i]);
else ans=tmd/cnt[i];
/*if (ans) ans=min(ans,(fi+la)*num/2/cnt[i]);
else ans=(fi+la)*num/2/cnt[i];*/
}
printf("%lld\n",ans);
}
return 0;
}

启发

考虑把所有数一起处理,可以节省时间。

【时光回溯】【JZOJ3566】【GDKOI2014】阶乘的更多相关文章

  1. 【时光回溯】【JZOJ3567】【GDKOI2014】石油储备计划

    题目描述 输入 输出 对于每组数据,输出一个整数,表示达到"平衡"状态所需的最小代价. 样例输入 2 3 6 1 5 1 2 1 2 3 2 5 4 5 4 3 2 1 3 1 1 ...

  2. 【时光回溯】【JZOJ3571】【GDKOI2014】内存分配

    题目描述 输入 输出 输出m行,每行一个整数,代表输入中每次程序变化后系统所需要的空闲内存单位数. 样例输入 2 3 1 4 1 4 2 2 1 2 1 1 1 1 1 样例输出 2 3 1 数据范围 ...

  3. 【时光回溯】【JZOJ3568】【GDKOI2014】小纪的作业题

    题目描述 输入 输出 有M行,每个询问一行,输出结果mod 1,000,000,007的值. 样例输入 10 3 3 5 1 2 3 1 3 5 2 1 7 9 3 9 2 3 样例输出 10 19 ...

  4. 25个 Git 进阶技巧

    [ 原文] http://www.open-open.com/lib/view/open1431331496857.html 我已经使用git差不多18个月了,觉得自己对它应该已经非常了解.然后来自G ...

  5. git基本技巧及进阶

    基本技巧 1. 安装后的第一步 在安装好git后,你第一件该做的事是设置你的名字和电子邮箱,因为每次提交都要用到这些信息: $ git config --global user.name " ...

  6. Git技巧总结分享

    接触Git有很长一段时间了,从最初的不懂到逐渐熟悉运用,相比于SVN,更热衷于Git这一款强大的版本控制工具. 废话不多说,下面对Git做了一些技巧总结,在此分享下,希望能帮助到一些喜欢Git的朋友们 ...

  7. 【BZOJ】【3052】【WC2013】糖果公园

    树分块 老早(大约一个月以前?)就听说这道神题了……orz rausen 一直拖到现在才做……发现还是不会呢= = 只好也去Orz了Hzwer和zky http://hzwer.com/5250.ht ...

  8. HTTP/2 对 Web 性能的影响(上)

    一.前言 HTTP/2 于 2015 年 5 月正式推出.自诞生以来,它就一直在影响着网络性能最佳实践.在本篇文章中,我们将讨论 HTTP/2 的二进制帧.延迟削减.潜在利弊以及相应的应对措施. 超文 ...

  9. [USACO 2010 Open Silver 3.Time Travel]——链表

    Description 约翰得到了一台时光机,他可以用这台机器回到过去(但不能到未来),改变他家的牛群.约翰 打算依次进行 N 步操作,每步操作分为三种: • 买入操作以 a 表示,后接一个参数 i, ...

随机推荐

  1. Creating a bootable Ubuntu USB stick

    Windows: https://tutorials.ubuntu.com/tutorial/tutorial-create-a-usb-stick-on-windows#0 Ubuntu: http ...

  2. 升级gitk后,Error in startup script: unknown color name "lime"

    $ gitkError in startup script: unknown color name "greeen" (processing "-fore" o ...

  3. 仓库盘点功能-ThinkPHP_学习随笔

    public function check() { $db = M('Bookinfo'); $region = I('post.region'); $c = $db -> count(); f ...

  4. [code]彩色图像直方图均衡化 histogram_rgb

    //2013.9 eageldiao #ifdef HISTOGRAM_RGB unsigned ]; unsigned intncount[]={},ncount1[]={},ncount2[]={ ...

  5. Docker学习入门

    Docker简介: Docker 包括三个基本概念 镜像(Image) 容器(Container) 仓库(Repository) 理解了这三个概念,就理解了 Docker 的整个生命周期. Docke ...

  6. [转]C#接收邮件

    最近由于工作需要,接触到了邮件服务器.以前我用CF写过,感觉没有什么,我想用C#来实现会更简单,但是万万没想到C#没有提供邮件接收的方法,令我很不解.通过我在网上查找,发现了一个国外公司写好的接收邮件 ...

  7. jqGrid列的统计

    $("#List").jqGrid({ url: "${pageContext.request.contextPath}/cbfx/getCbhzList.do" ...

  8. consul原理

    阅读目录 一.使用Consul做服务发现的若干姿势 1.https://www.cnblogs.com/bossma/p/9756809.html 阅读目录 启动第1个Server节点,集群要求要有3 ...

  9. 【python之路24】装饰器

    1.装饰器的应用场景 通常IT公司的程序开发是分工的,例如某公司某个部门负责底层函数的开发,另一个部门利用其函数实现高级功能,那么如果负责底层开发的函数需要改动,一般来说不会直接在函数上进行修改,通常 ...

  10. Cors之带凭据的请求

    带凭据的请求 默认情况下,跨源请求不提供凭据.通过将withCredentials属性设置为true,可以制定某个请求应该发送凭据.