题目描述

    老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。    有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。

输入

第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。       同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

输出

    对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。

样例输入

7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7

样例输出

2
35
8

提示

【样例说明】
初始时数列为(1,2,3,4,5,6,7)。 经过第1次操作后,数列为(1,10,15,20,25,6,7)。 对第2次操作,和为10+15+20=45,模43的结果是2。 经过第3次操作后,数列为(1,10,24,29,34,15,16} 对第4次操作,和为1+10+24=35,模43的结果是35。 对第5次操作,和为29+34+15+16=94,模43的结果是8。

测试数据规模如下表所示
数据编号 1 2 3 4 5 6 7 8 9 10 N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000 M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000

  这是一道进阶板的线段树模板,因为有加有乘,所以要注意运算顺序,要先乘再加,每个点维护的区间和都是一个kx+b的形式。

具体操作看代码吧。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
long long a[1000000];
long long s[1000000];
long long sum[1000000];
int n,m;
int p;
int x,y,k;
int opt;
void updata(int rt)
{
sum[rt]=(sum[rt<<1]+sum[rt<<1|1])%p;
}
void build(int rt,int l,int r)
{
s[rt]=1;
if(l==r)
{
scanf("%d",&sum[rt]);
return ;
}
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
updata(rt);
}
void sign(int rt,int l,int r)
{
int mid=(l+r)>>1;
sum[rt<<1]=(sum[rt<<1]*s[rt]%p+a[rt]*(mid-l+1)%p)%p;
sum[rt<<1|1]=(sum[rt<<1|1]*s[rt]%p+a[rt]*(r-mid)%p)%p;
s[rt<<1]=s[rt]*s[rt<<1]%p;
s[rt<<1|1]=s[rt]*s[rt<<1|1]%p;
a[rt<<1]=(a[rt<<1]*s[rt]+a[rt])%p;
a[rt<<1|1]=(a[rt<<1|1]*s[rt]+a[rt])%p;
a[rt]=0;
s[rt]=1;
}
void change(int rt,int l,int r,int L,int R,int v,int x)
{
if(L<=l&&r<=R)
{
if(x==1)
{
s[rt]=s[rt]*v%p;
a[rt]=a[rt]*v%p;
sum[rt]=sum[rt]*v%p;
}
else
{
a[rt]=(a[rt]+v)%p;
sum[rt]=(sum[rt]+v*(r-l+1))%p;
}
return ;
}
sign(rt,l,r);
int mid=(l+r)>>1;
if(L<=mid)
{
change(rt<<1,l,mid,L,R,v,x);
}
if(R>mid)
{
change(rt<<1|1,mid+1,r,L,R,v,x);
}
updata(rt);
}
long long query(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
{
return sum[rt];
}
sign(rt,l,r);
long long tot=0;
int mid=(l+r)>>1;
if(L<=mid)
{
tot+=query(rt<<1,l,mid,L,R);
tot%=p;
}
if(R>mid)
{
tot+=query(rt<<1|1,mid+1,r,L,R);
tot%=p;
}
return tot%p;
}
int main()
{
scanf("%d%d",&n,&p);
build(1,1,n);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d",&opt);
if(opt==1)
{
scanf("%d%d%d",&x,&y,&k);
change(1,1,n,x,y,k,1);
}
else if(opt==2)
{
scanf("%d%d%d",&x,&y,&k);
change(1,1,n,x,y,k,2);
}
else
{
scanf("%d%d",&x,&y);
printf("%lld\n",query(1,1,n,x,y));
}
}
}

BZOJ1798[Ahoi2009]维护序列——线段树的更多相关文章

  1. [P2023][AHOI2009]维护序列(线段树)

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  2. [AHOI2009]维护序列 (线段树)

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,-,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  3. 洛谷 P2023 [AHOI2009]维护序列 || 线段树加法和乘法运算

    原理倒是非常简单.设原数为x,加法的lazytag为b,乘法的lazytag为a,操作数为c,那么原式为ax+b,乘上c后(ax+b)c=(ac)*x+b*c,加上c后(ax+b)+c=ax+(b+c ...

  4. [BZOJ1798][AHOI2009]Seq维护序列 线段树

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 一眼看过去线段树,事实上就是线段树.对于乘和加的两个标记,我们可以规定一个顺序,比如 ...

  5. BZOJ 1798 AHOI2009 Seq 维护序列 线段树

    题目大意:维护一个序列,提供三种操作: 1.将区间中每个点的权值乘上一个数 2.将区间中每个点的权值加上一个数 3.求一段区间的和对p取模的值 2631的超^n级弱化版.写2631之前能够拿这个练练手 ...

  6. 【AHOI2009】 维护序列 - 线段树

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  7. bzoj1798 [Ahoi2009]维护序列

    Description 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2 ...

  8. 洛谷 P2023 维护序列——线段树

    先上一波题目 https://www.luogu.org/problem/P2023 复习了一波线段树 题目涉及的操作有区间加 区间乘以及区间求和 tips:线段树在传标记的时候 优先传乘法标记再传加 ...

  9. 【线段树】Bzoj1798 [AHOI2009] 维护序列

    Description 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2 ...

随机推荐

  1. DNS 协议

    DNS 入门 域名系统(英文:Domain Name System,缩写:DNS)是互联网的一项服务.它作为将域名和 IP 地址相互映射的一个分布式数据库,能够使人更方便地访问互联网.DNS 使用 T ...

  2. React-使用styled-components

    1.安装 npm install --save styled-components 2.简单使用 style.js: import styled from 'styled-components'; i ...

  3. ListView 控件和 INotifyPropertyChanged 接口

    原文:ListView 控件和 INotifyPropertyChanged 接口 ListView 控件和 DataGridView 控件 ListView 是跟 Winform 中 DataGri ...

  4. Hybrid小程序混合开发之路 - 数据交互

    HTML+CSS是历史悠久.超高自由度.控制精准.表现能力极强.编码简单.学习门槛超低.真跨平台的一种UI界面开发方式. 本文介绍的是微信小程序和H5混合开发的一种数据交互方式. 很多应用在原生界面中 ...

  5. BTrace 初探

    BTrace 是一款java诊断工具,在解决现场问题的时候非常有用. 今天使用的时候碰到几个坑,先记录一下. 下载下来以后直接运行报错 root@iZ2ze89756yjbvq7le6obdZ:~/b ...

  6. .NetCore实践篇:分布式监控Zipkin持久化之殇

    前言 本系列已写了四篇文章,读本篇之前,可以先读前面几篇. 思考大纲:.Net架构篇:思考如何设计一款实用的分布式监控系统? 实践篇一:.NetCore实践篇:分布式监控客户端ZipkinTracer ...

  7. 事件(event)

    事件概述 委托是一种类型可以被实例化,而事件可以看作将多播委托进行封装的一个对象成员(简化委托调用列表增加和删除方法)但并非特殊的委托,保护订阅互不影响. 基础事件(event) 在.Net中声明事件 ...

  8. LVM : 扩展文件系统的容量

    如果发现文件系统的容量不足了,可以通过 LVM 轻松的进行扩展(当然也可以进行缩减操作).本文将紧接前文中的 demo 详细的介绍扩展文件系统的操作过程.说明:本文的演示环境为 ubuntu 16.0 ...

  9. BugkuCTF sql注入

    前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...

  10. Webpack 2 视频教程 001 - Webpack 简介

    这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲解的. 这个基本就是目前 ...