题目描述

现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,
而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 
1:(x,y)<==>(x+1,y) 
2:(x,y)<==>(x,y+1) 
3:(x,y)<==>(x+1,y+1) 
道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,
开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击
这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,
才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的
狼的数量要最小。因为狼还要去找喜羊羊麻烦.

输入

第一行为N,M.表示网格的大小,N,M均小于等于1000.
接下来分三部分
第一部分共N行,每行M-1个数,表示横向道路的权值. 
第二部分共N-1行,每行M个数,表示纵向道路的权值. 
第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 
输入文件保证不超过10M

输出

输出一个整数,表示参与伏击的狼的最小数量.

题意就是割开一部分边试起点和终点不连通且割开边的边权最小,显然是最小割(转成最大流做)。但要注意的是,这里的边是双向边,所以回流边可以直接把流量赋成正向边边权,这样就不用建双向边了(就是不用建正向v流量边,反向0流量边再建反向v流量边,正向0流量边;直接建正向v流量边和反向v流量边)。这样的好处是一开始回流边就可以增广。

最后附上代码。

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
int next[6000001];
int to[6000001];
int val[6000001];
int head[6000001];
int tot=1;
int q[6000001];
int n,m;
int S,T;
int x;
int ans;
int d[6000001];
const int INF=0x3f3f3f3f;
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=v;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[T]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,0x3f3f3f);
}
}
int main()
{
scanf("%d%d",&n,&m);
S=1;
T=n*m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m-1;j++)
{
scanf("%d",&x);
add((i-1)*m+j,(i-1)*m+j+1,x);
}
}
for(int i=1;i<=n-1;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
add((i-1)*m+j,i*m+j,x);
}
}
for(int i=1;i<=n-1;i++)
{
for(int j=1;j<=m-1;j++)
{
scanf("%d",&x);
add((i-1)*m+j,i*m+j+1,x);
}
}
dinic();
printf("%d",ans);
return 0;
}

BZOJ1001[BeiJing2006]狼抓兔子——最小割的更多相关文章

  1. BZOJ1001: [BeiJing2006]狼抓兔子 [最小割 | 对偶图+spfa]

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 19528  Solved: 4818[Submit][ ...

  2. bzoj1001: [BeiJing2006]狼抓兔子 -- 最小割

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MB Description 现在小朋友们最喜欢的"喜羊羊与灰太狼 ...

  3. BZOJ1001[BeiJing2006]狼抓兔子最小割網絡流

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  4. BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路

    原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...

  5. BZOJ1001: [BeiJing2006]狼抓兔子 (最小割转最短路)

    浅析最大最小定理在信息学竞赛中的应用---周东 ↑方法介绍 对于一个联通的平面图G(满足欧拉公式) 在s和t间新连一条边e; 然后建立一个原图的对偶图G*,G*中每一个点对应原图中每一个面,每一条边对 ...

  6. 【bzoj1001】[BeiJing2006]狼抓兔子 最小割+对偶图+最短路

    题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  7. BZOJ 1001: [BeiJing2006]狼抓兔子 最小割

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓 ...

  8. [bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  9. bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)

    平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...

随机推荐

  1. 3分钟学会做智能插座(DIY)

    转载请注明:@小五义http://www.cnblogs.com/xiaowuyiQQ群:64770604 感谢博达科技提供的技术支持,博达科技新出了turnip智能插座,通过微信控制,实现了语音控制 ...

  2. 2-关于单片机通信数据传输(中断接收,大小端,IEEE754浮点型格式,共用体,空闲中断,环形队列)

    上一篇链接 http://www.cnblogs.com/yangfengwu/p/8628219.html 先说明一点这种方式,不光对于单片机类的,,对于上位机接收数据同样适用----不骗人的,自己 ...

  3. tiled卷积神经网络(tiled CNN)

    这个结构是10年Quoc V.Le等人提出的,这里的tiled,按照 Lecun的解释是Locally-connect non shared.即是局部连接,而且不是共享的,这是针对于权重来说的.本文翻 ...

  4. Log4j使用笔记

            在工作过程中,常常需要查看后台日志,为了更好的记录日志,我们使用Log4j来记录日志. 一.maven依赖的配置         在maven中央库库里找到log4j的java包,添加 ...

  5. 一头雾水的"Follow The Pointer"

    原文:一头雾水的"Follow The Pointer" 一头雾水的"Follow The Pointer"                           ...

  6. EF性能优化-有人说EF性能低,我想说:EF确实不如ADO.NET

    十年河东,十年河西,莫欺少年穷. EF就如同那个少年,ADO.NET则是一位壮年.毕竟ADO.NET出生在EF之前,而EF所走的路属于应用ADO.NET. 也就是说:你所写的LINQ查询,最后还是要转 ...

  7. 算法相关——Java排序算法之桶排序(一)

    (代码中对应一个数组的下标),将每个元素放入对应桶中,再将所有元素按顺序输出(代码中则按顺序将数组i下标输出arrary[i]次),即为{0,1,3,5,5,6,9}. 1.2  代码实现 /* *@ ...

  8. Luogu P2261 [CQOI2007]余数求和

    最近中考放假几天都在怼一道BJOI2018的水题,但卡死在90pts跑不动啊! 然后今天发现终于过了然而Hack的数据全RE了然后就开始找新的题目来找回信心. 然后发现智能推荐里有这道题,然后想了1m ...

  9. .net core 中使用httpclient,HttpClientFactory的问题

    Microsoft 在.Net Framework 4.5中引入了HttpClient,并且是在.NET服务器端代码中使用Web API的最常用方法.但它有一些严重的问题,如释放HttpClient对 ...

  10. (代码篇)从基础文件IO说起虚拟内存,内存文件映射,零拷贝

    上一篇讲解了基础文件IO的理论发展,这里结合java看看各项理论的具体实现. 传统IO-intsmaze 传统文件IO操作的基础代码如下: FileInputStream in = new FileI ...