先不考虑换根。考虑修改某个点权值对答案的影响。显然这只会改变其祖先的子树权值和,设某祖先原子树权值和为s,修改后权值增加了x,则对答案的影响为(s+x)2-s2=2sx+x2。可以发现只要维护每个点到根的路径的子树和之和就可以了,随便树剖一波。

  对于换根,可以发现这也只会改变其祖先的子树权值和。设原本的根到要换的根这段路径上的点子树权值和依次为S、s1、s2……sn,则换根后其依次为S-s1、S-s2……S-sn、S,答案变化量为(S-s1)2-S2+……+S2-sn2=(S-s1)2-s12+(S-s2)2-s22+……+(S-sn)2-sn2=nS2-2S(s1+……+sn)。同样只需要维护每个点到根的路径的子树和之和。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 200010
#define ll long long
int n,q,p[N],a[N],t,S,cnt=;
int tag[N],top[N],id[N],son[N],fa[N],deep[N],size[N],value[N<<];
int L[N<<],R[N<<],lazy[N<<];
ll ans,sum[N<<];
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs1(int k)
{
size[k]=;value[k]=a[k];
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k])
{
fa[edge[i].to]=k;
deep[edge[i].to]=deep[k]+;
dfs1(edge[i].to);
size[k]+=size[edge[i].to];
value[k]+=value[edge[i].to];
if (size[edge[i].to]>size[son[k]]) son[k]=edge[i].to;
}
ans+=1ll*value[k]*value[k];
}
void dfs2(int k,int from)
{
top[k]=from;
id[k]=++cnt;tag[cnt]=k;
if (son[k]) dfs2(son[k],from);
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k]&&edge[i].to!=son[k])
dfs2(edge[i].to,edge[i].to);
}
void up(int k){sum[k]=sum[k<<]+sum[k<<|];}
void down(int k)
{
sum[k<<]+=1ll*lazy[k]*(R[k<<]-L[k<<]+),sum[k<<|]+=1ll*lazy[k]*(R[k<<|]-L[k<<|]+);
lazy[k<<]+=lazy[k],lazy[k<<|]+=lazy[k];
lazy[k]=;
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r,lazy[k]=;
if (l==r) {sum[k]=value[tag[l]];return;}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
up(k);
}
void add(int k,int l,int r,int x)
{
if (L[k]==l&&R[k]==r) {sum[k]+=1ll*x*(r-l+);lazy[k]+=x;return;}
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) add(k<<,l,r,x);
else if (l>mid) add(k<<|,l,r,x);
else add(k<<,l,mid,x),add(k<<|,mid+,r,x);
up(k);
}
ll query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return sum[k];
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) return query(k<<,l,r);
else if (l>mid) return query(k<<|,l,r);
else return query(k<<,l,mid)+query(k<<|,mid+,r);
}
ll tot(int k)
{
ll s=;
while (k)
{
s+=query(,id[top[k]],id[k]);
k=fa[top[k]];
}
return s;
}
void modify(int k,int x)
{
while (k)
{
add(,id[top[k]],id[k],x);
k=fa[top[k]];
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("datastructure.in","r",stdin);
freopen("datastructure.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),q=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
for (int i=;i<=n;i++) S+=a[i]=read();
deep[]=;
dfs1();
dfs2(,);
build(,,n);
while (q--)
{
int op=read();
if (op==)
{
int x=read();
printf(LL,ans-((tot(x)-S)*S<<)+1ll*(deep[x]-)*S*S);
}
else
{
int x=read(),y=read();
y-=a[x];a[x]+=y;
S+=y;
ans+=(y*tot(x)<<)+(1ll*y*y*deep[x]);
modify(x,y);
}
}
return ;
}

Luogu3676 小清新数据结构题(树链剖分+线段树)的更多相关文章

  1. [luogu3676] 小清新数据结构题 [树链剖分+线段树]

    题面 传送门 思路 本来以为这道题可以LCT维护子树信息直接做的,后来发现这样会因为splay形态改变影响子树权值平方和,是splay本身的局限性导致的 所以只能另辟蹊径 首先,我们考虑询问点都在1的 ...

  2. 【bzoj4127】Abs 树链剖分+线段树

    题目描述 给定一棵树,设计数据结构支持以下操作 1 u v d 表示将路径 (u,v) 加d 2 u v 表示询问路径 (u,v) 上点权绝对值的和 输入 第一行两个整数n和m,表示结点个数和操作数 ...

  3. 【Codeforces827D/CF827D】Best Edge Weight(最小生成树性质+倍增/树链剖分+线段树)

    题目 Codeforces827D 分析 倍增神题--(感谢T*C神犇给我讲qwq) 这道题需要考虑最小生成树的性质.首先随便求出一棵最小生成树,把树边和非树边分开处理. 首先,对于非树边\((u,v ...

  4. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  5. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  6. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  7. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  8. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  9. B20J_2836_魔法树_树链剖分+线段树

    B20J_2836_魔法树_树链剖分+线段树 题意: 果树共有N个节点,其中节点0是根节点,每个节点u的父亲记为fa[u].初始时,这个果树的每个节点上都没有果子(即0个果子). Add u v d ...

  10. B20J_2243_[SDOI2011]染色_树链剖分+线段树

    B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...

随机推荐

  1. 在模拟器上运行Android项目时报错:DELETE_FAILED_INTERNAL_ERROR Error while Installing APKs

    今天在Android Studio自带的模拟器上运行项目的时候,出现如下所示Error:当点击ok后,发现模拟器不能运行程序. 解决办法: 更改Android Studio中的设置: File---& ...

  2. 学习CSS布局 - 没有布局

    如果你只想把所有内容都塞进一栏里,那么不用设置任何布局也是OK的. 然而,如果用户把浏览器窗口调整的很大,这时阅读网页会非常难受: 读完每一行之后,你的视觉焦点要从右到左移动一大段距离. 试着调整下浏 ...

  3. Omi框架学习之旅 - 组件通讯(group-data通讯) 及原理说明

    childrenData的方式可以批量传递数据给组件,但是有很多场景下data的来源不一定非要都从childrenData来, childrenData是个数组,会和组件的顺序一一对应,这就给不同传递 ...

  4. Android中AsyncTask的使用

    原文 https://blog.csdn.net/liuhe688/article/details/6532519 在Android中实现异步任务机制有两种方式,Handler和AsyncTask. ...

  5. 【数据库摘要】10_Sql_Create_Index

    CREATE INDEX 语句 CREATE INDEX 语句用于在表中创建索引. 在不读取整个表的情况下.索引使数据库应用程序能够更快地查找数据. 索引 您能够在表中创建索引,以便更加高速高效地查询 ...

  6. Rabbitmq-topic演示

    在direct演示里,我们的日志系统实现了可选择性的接收日志.但仍旧有一些限制:不能基于多种标准进路由.在一个完整的日志系统中,我们可能不仅要根据日志的严重级别来接收日志,可能需要基于日志的来源来进行 ...

  7. BootStrap学习(2)_下拉菜单&按钮组

    一.下拉菜单 1.基本下拉菜单 如需使用下列菜单,只需要在class .dropdown 内加上下拉菜单即可.下面的实例演示了基本的下拉菜单: <!DOCTYPE html> <ht ...

  8. 4358: permu

    4358: permu 链接 分析: 不删除的莫队+可撤销的并查集. 每次询问先固定左端点到一个块内,然后将这些右端点从小到大排序,然后询问的过程中,右端点不断往右走,左端点可能会撤销,但是移动区间不 ...

  9. C#实现.Net对邮件进行DKIM签名和验证,支持附件,发送邮件签名后直接投递到对方服务器(无需己方邮件服务器)

    项目地址 https://github.com/xiangyuecn/DKIM-Smtp-csharp 主要支持 对邮件进行DKIM签名,支持带附件 对整个邮件内容(.eml文件)的DKIM签名进行验 ...

  10. jQuery生成QRcode二维码

    jQuery生成QRcode二维码示例 <!DOCTYPE html> <html> <head> <meta charset="utf-8&quo ...