题目链接


考虑两个\(\#\)之间产生的花费是怎样的。设这之间放了\(k\)个棋子,花费是\(\frac{k(k-1)}{2}\)。

在\((r,c)\)处放棋子,行和列会同时产生花费,且花费和该行该连通块与该列该连通块当前有多少个有关。想到网络流就很简单了,建图比较简单,类似[[WC2007]剪刀石头布]。

点数写了3n2,其实2n2就够了...


//836ms	640K
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=55,N2=N*N*3,M=2e5+5,INF=0x3f3f3f3f; int S,T,mp[N][N],idr[N][N],idc[N][N],Enum,H[N2],nxt[M],to[M],cap[M],cost[M],q[10005],Ans[N*N],cur[N2],Cost,dis[N2];
bool vis[N2]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v,int w,int c)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w, cost[Enum]=c;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0, cost[Enum]=-c;
}
void NumberCol(int x,int y,int id)
{
int tx=x,cnt=1;
for(idc[x][y]=id; mp[x+1][y]; idc[++x][y]=id,++cnt);
for(x=tx; mp[x-1][y]; idc[--x][y]=id,++cnt);
for(int i=0; i<cnt; ++i) AE(id,T,1,i);
}
inline void Col(int x,int y,int id)
{
idr[x][y]=id, AE(id+1,idc[x][y],1,0);
}
void NumberRow(int x,int y,int id)
{
int ty=y,cnt=1;
for(Col(x,y,id); mp[x][y+1]; Col(x,++y,id),++cnt);
for(y=ty; mp[x][y-1]; Col(x,--y,id),++cnt);
for(int i=0; i<cnt; ++i) AE(id,id+1,1,i);
AE(S,id,cnt,0);
}
void Build(int n)
{
int tot=0; S=0, T=n*n*3+1, Enum=1;
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j) if(mp[i][j]&&!idc[i][j]) NumberCol(i,j,++tot);
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j) if(mp[i][j]&&!idr[i][j]) NumberRow(i,j,++tot), ++tot;
}
bool SPFA()
{
static bool inq[N2];//N2!
static std::queue<int> q;
memset(dis,0x3f,T+1<<2);
q.push(S), dis[S]=0;
while(!q.empty())
{
int x=q.front(); q.pop(), inq[x]=0;
for(int i=H[x],v; i; i=nxt[i])
if(cap[i]&&dis[v=to[i]]>dis[x]+cost[i])
dis[v]=dis[x]+cost[i], !inq[v]&&(q.push(v),inq[v]=1);
}
return dis[T]<INF;
}
bool DFS(int x)
{
if(x==T) return 1;
vis[x]=1;
for(int &i=cur[x]; i; i=nxt[i])
if(cap[i]&&dis[to[i]]==dis[x]+cost[i]&&!vis[to[i]]&&DFS(to[i]))
return --cap[i],++cap[i^1],Cost+=cost[i],1;
return 0;
}
void Flow(int tot)
{
int flow=0;
while(SPFA())
{
memcpy(cur,H,T+1<<2), memset(vis,0,T+1);
while(flow<tot&&DFS(S)) Ans[++flow]=Cost;
if(flow>=tot) break;
}
} int main()
{
// freopen("A.in","r",stdin);
// freopen("A.out","w",stdout); int n=read();
for(int i=1; i<=n; ++i)
{
register char c=gc(); while(c!='.'&&c!='#') c=gc(); mp[i][1]=c=='.';
for(int j=2; j<=n; ++j) mp[i][j]=gc()=='.';
}
Build(n);
int m=read(),mx=0;
for(int i=1; i<=m; ++i) mx=std::max(mx,q[i]=read());
Flow(mx);
for(int i=1; i<=m; printf("%d\n",Ans[q[i++]])); return 0;
}

LOJ.6068.[2017山东一轮集训Day4]棋盘(费用流zkw)的更多相关文章

  1. Loj 6068. 「2017 山东一轮集训 Day4」棋盘

    Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...

  2. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  3. loj6068. 「2017 山东一轮集训 Day4」棋盘 二分图,网络流

    loj6068. 「2017 山东一轮集训 Day4」棋盘 链接 https://loj.ac/problem/6068 思路 上来没头绪,后来套算法,套了个网络流 经典二分图 左边横,右边列 先重新 ...

  4. [LOJ#6068]. 「2017 山东一轮集训 Day4」棋盘[费用流]

    题意 题目链接 分析 考虑每个棋子对对应的横向纵向的极大区间的影响:记之前这个区间中的点数为 \(x\) ,那么此次多配对的数量即 \(x\) . 考虑费用流,\(S\rightarrow 横向区间 ...

  5. LOJ 6068「2017 山东一轮集训 Day4」棋盘

    题意 一个 \(n\times n\) 的棋盘上面有若干障碍物. 定义两个棋子可以互相攻击当且仅当这两个棋子的横坐标或纵坐标相等而且中间不能隔着障碍物.(可以隔棋子) 有 \(q\) 次询问,每次询问 ...

  6. LOJ.6066.[2017山东一轮集训Day3]第二题(树哈希 二分)

    LOJ 被一件不愉快的小事浪费了一个小时= =. 表示自己(OI方面的)智商没救了=-= 比较显然 二分+树哈希.考虑对树的括号序列进行哈希. 那么每个点的\(k\)子树的括号序列,就是一段区间去掉距 ...

  7. LOJ.6060.[2017山东一轮集训Day1/SDWC2018Day1]Set(线性基)

    LOJ BZOJ 明明做过一道(最初思路)比较类似的题啊,怎么还是一点思路没有. 记所有元素的异或和为\(s\),那么\(x_1+x_2=x_1+x_1\ ^{\wedge}s\). \(s\)是确定 ...

  8. LOJ.6073.[2017山东一轮集训Day5]距离(可持久化线段树 树链剖分)

    题目链接 就是恶心人的,简单写写了...(似乎就是[HNOI2015]开店?) 拆式子,记\(dis_i\)为\(i\)到根节点的路径权值和,\(Ans=\sum dis_{p_i}+\sum dis ...

  9. LOJ.6074.[2017山东一轮集训Day6]子序列(DP 矩阵乘法)

    题目链接 参考yww的题解.本来不想写来但是他有一些笔误...而且有些地方不太一样就写篇好了. 不知不觉怎么写了这么多... 另外还是有莫队做法的...(虽然可能卡不过) \(60\)分的\(O(n^ ...

随机推荐

  1. 网络编程—tcp

    一.TCP简介 TCP介绍 TCP协议,传输控制协议(英语:Transmission Control Protocol,缩写为 TCP)是一种面向连接的.可靠的.基于字节流的传输层通信协议,由IETF ...

  2. C++ Primer 笔记——语句

    switch 内部的变量定义 1.因为C++语言规定,不允许跨过变量的初始化语句直接跳转到该变量作用域内的另一位置,所以有了如下情况: bool bsuccess = false; switch (b ...

  3. Ubuntu 更改屏幕分辨率

    安装完Ubuntu后发现分辨率不合适,平时习惯了看小一点的文字,所以搜了一下修改屏幕分辨率的命令,具体操作如下: 1.先用 xrandr 命令查看一下当前系统支持的分辨率 wayde@wayde-Al ...

  4. Spring.Net 简单实例-02(属性注入)

    说明:接续Spring.Net 简单实例-01(IOC) 话不多说看操作 1:为UserInfo添加属性 2: 修改App.config中代码 <?xml version="1.0&q ...

  5. exec函数族

    进程程序替换 进程程序替换原理 fork创建子进程执行的是和父进程相同的程序(也有可能是某个分支),通常fork出的子进程是为了完成父进程所分配的任务,所以子进程通常会调用一种exec函数(六种中的任 ...

  6. gitblit删除版本库

    Git客户端不提供删除远程仓库的方法,gitblit服务器网页也不支持删除版本仓库.若要强制删除,Windows下可以: 先在任务管理器中停止gitblit进程,然后将gitblit版本库文件夹中将版 ...

  7. [转] React风格的企业前端技术

    亲爱的各位朋友们,大家下午好! 首先祝大家国庆节快乐! 很高兴可以在国庆前夕,可以为大家分享一下React风格的企业前端技术. 谈到前端,可能以前大家的第一感觉就是,前端嘛,无非就是做做页面切图,顶多 ...

  8. poj2398

    题解: 计算几何入门题 对每个二分最近的在它右边的杆子 如何判断一个杆子在它右边呢 计算机判断这些要更善于利用点积和叉积 如果叉积为正代表在顺时针方向叉积为负在逆时针 发现要在struct里面重载运算 ...

  9. Comparison of several types of convergence

    In functional analysis, several types of convergence are defined, namely, strong convergence for ele ...

  10. eclipse启动web应用 报错

    错误:The origin server did not find a current representation for the target resource or is not willing ...